The swimming defect caused by the absence of the transcriptional regulator LdtR in Sinorhizobium meliloti is restored by mutations in the motility genes motA and motS

dc.contributor.authorSobe, Richard C.en
dc.contributor.authorScharf, Birgit E.en
dc.date.accessioned2025-06-10T14:49:02Zen
dc.date.available2025-06-10T14:49:02Zen
dc.date.issued2024-05en
dc.description.abstractThe flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha-proteobacterium Sinorhizobium meliloti is nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtR mutant can be restored by secondary mutations in the motility gene motA or a previously uncharacterized gene in the flagellar regulon, which we named motS. MotS is not essential for S. meliloti motility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N-terminal transmembrane segment, a long-disordered region, and a conserved β-sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotA<inf>G12S</inf> also restored the ΔldtR motility defect. The MotA<inf>G12S</inf> variant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild-type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotA<inf>G12S</inf> might stabilize its interaction with altered peptidoglycan.en
dc.description.versionPublished versionen
dc.format.extentPages 954-970en
dc.format.extent17 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1111/mmi.15247en
dc.identifier.eissn1365-2958en
dc.identifier.issn0950-382Xen
dc.identifier.issue5en
dc.identifier.orcidScharf, Birgit [0000-0001-6271-8972]en
dc.identifier.pmid38458990en
dc.identifier.urihttps://hdl.handle.net/10919/135455en
dc.identifier.volume121en
dc.language.isoenen
dc.publisherWileyen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/38458990en
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectbacterial flagellaen
dc.subjectpeptidoglycanen
dc.subjectrotary motoren
dc.subjectsuppressor mutationsen
dc.subjectswimming motilityen
dc.subject.meshFlagellaen
dc.subject.meshSinorhizobium melilotien
dc.subject.meshBacterial Proteinsen
dc.subject.meshTranscription Factorsen
dc.subject.meshGene Expression Regulation, Bacterialen
dc.subject.meshMutationen
dc.titleThe swimming defect caused by the absence of the transcriptional regulator LdtR in <i>Sinorhizobium meliloti</i> is restored by mutations in the motility genes <i>motA</i> and <i>motS</i>en
dc.title.serialMolecular Microbiologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2024-02-17en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Biological Sciencesen
pubs.organisational-groupVirginia Tech/Faculty of Health Sciencesen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Molecular Microbiology - 2024 - Sobe - The swimming defect caused by the absence of the transcriptional regulator LdtR in.pdf
Size:
2.94 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: