Development of Advanced Image Processing Algorithms for Bubbly Flow Measurement
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
An accurate measurement of bubbly flow has a significant value for understanding the bubble behavior, heat and energy transfer pattern in different engineering systems. It also helps to advance the theoretical model development in two-phase flow study. Due to the interaction between the gas and liquid phase, the flow patterns are complicated in recorded image data. The segmentation and reconstruction of overlapping bubbles in these images is a challenging task. This dissertation provides a complete set of image processing algorithms for bubbly flow measurement. The developed algorithm can deal with bubble overlapping issues and reconstruct bubble outline in 2D high speed images under a wide void fraction range. Key bubbly flow parameters such as void fraction, interfacial area concentration, bubble number density and velocity can be computed automatically after bubble segmentation. The time-averaged bubbly flow distributions are generated based on the extracted parameters for flow characteristic study. A 3D imaging system is developed for 3D bubble reconstruction. The proposed 3D reconstruction algorithm can restore the bubble shape in a time sequence for accurate flow visualization with minimum assumptions. The 3D reconstruction algorithm shows an error of less than 2% in volume measurement compared to the syringe reading. Finally, a new image synthesis framework called Bubble Generative Adversarial Networks (BubGAN) is proposed by combining the conventional image processing algorithm and deep learning technique. This framework aims to provide a generic benchmark tool for assessing the performance of the existed image processing algorithms with significant quality improvement in synthetic bubbly flow image generation.