In planta studies of the corn pathogen Pantoea stewartii subsp. stewartii and applications of a corn-based industrial byproduct

TR Number
Date
2020-07-14
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Corn is a valuable agricultural commodity in the United States and in the world. The causal agent of Stewart's wilt disease in corn, Pantoea stewartii subsp. stewartii, is a bacterial phytopathogen that is vectored into the plant by the corn flea beetle, Chaetocnema pulicaria. After entering the apoplast of the leaf, the bacteria cause water soaking symptoms before traveling to the plant xylem to form a dense biofilm, thereby blocking water transport and inducing necrosis and wilt. This results in reduced crop yield and may even lead to death of the corn plant. To better understand the in planta requirements of this pathogen, a whole transcriptome study was performed via RNA-Seq to determine genes differentially expressed in the bacteria while inside the corn. It was found that nutrient transporters and stress response genes were upregulated specifically when the bacteria are in their host plant, suggesting a response to nutrient availability and host defense in the xylem. Further elucidation of the genes required for the P. stewartii in planta lifestyle was performed via a reverse genetics approach where in-frame gene deletions and the corresponding complementation strains were constructed for genes that had shown a fitness defect in corn based on a previously published Tn-Seq study: genes encoding seven transcription factors, nsrR, iscR, lrp, nac, DSJ_00125, DSJ_03645, and DSJ_18135, as well as a hypothetical protein DSJ_21690. Investigation of the physiological role of these genes was performed using in planta virulence and competition assays for all strains. An in planta qRT-PCR analysis of bacterial gene transcription was also completed for the strains with deletions in nsrR and iscR. In vitro assays were performed on all strains to determine their capsule production and motility phenotypes. Taken together, it was seen that iscR is important for colonization capabilities in planta, both NsrR and IscR act as regulators, and lrp is important for full disease capabilities, perhaps due to reduced capsule and motility phenotypes. These findings lay the groundwork for finding potential disease intervention strategies not only against P. stewartii, but also other xylem-dwelling bacterial phytopathogens.

In addition to exploring ways to enhance crop yield, an additional research area was on repurposing a byproduct of corn ethanol production, syrup. It was hypothesized that this corn-based syrup could be utilized as a carbon source to grown bacteria. In turn, the resulting bacterial biomass could then be added as a fish feed supplement in aquaculture. Syrup was tested as a growth medium for individual soil bacterial isolates as well as a full mixed bacterial community consortium to determine which bacteria could grow most efficiently, both in rate and yield. It was found that the highest growth rate and yield was from Bacillus species, some of which may have probiotic benefits to fish.

Ultimately, the collective outcomes from these projects in basic research about a bacterial corn pathogen and applied research about beneficial microbes grown on a corn-based substrate are expected to improve scientific endeavors as well as agricultural practices.

Description
Keywords
Pantoea stewartii, Stewart's wilt, phytopathogen, transcription regulation, corn, ethanol production, Bacillus species, aquaculture
Citation