Learning-to-Learn to Guide Random Search: Derivative-Free Meta Blackbox Optimization on Manifold

dc.contributor.authorSel, Bilgehanen
dc.contributor.authorTawaha, Ahmaden
dc.contributor.authorDing, Yuhaoen
dc.contributor.authorJia, Ruoxien
dc.contributor.authorJi, Boen
dc.contributor.authorLavaei, Javaden
dc.contributor.authorJin, Mingen
dc.date.accessioned2024-02-19T14:19:52Zen
dc.date.available2024-02-19T14:19:52Zen
dc.date.issued2023-01-01en
dc.description.abstractSolving a sequence of high-dimensional, nonconvex, but potentially similar optimization problems poses a computational challenge in engineering applications. We propose the first meta-learning framework that leverages the shared structure among sequential tasks to improve the computational efficiency and sample complexity of derivative-free optimization. Based on the observation that most practical high-dimensional functions lie on a latent low-dimensional manifold, which can be further shared among instances, our method jointly learns the meta-initialization of a search point and a meta-manifold. Theoretically, we establish the benefit of meta-learning in this challenging setting. Empirically, we demonstrate the effectiveness of the proposed algorithm in two high-dimensional reinforcement learning tasks.en
dc.description.versionPublished versionen
dc.format.extentPages 38-50en
dc.format.mimetypeapplication/pdfen
dc.identifier.eissn2640-3498en
dc.identifier.orcidJi, Bo [0000-0003-0149-7509]en
dc.identifier.orcidJia, Ruoxi [0000-0001-9662-9556]en
dc.identifier.orcidJin, Ming [0000-0001-7909-4545]en
dc.identifier.urihttps://hdl.handle.net/10919/118015en
dc.identifier.volume211en
dc.language.isoenen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleLearning-to-Learn to Guide Random Search: Derivative-Free Meta Blackbox Optimization on Manifolden
dc.title.serial5th Annual Learning for Dynamics & Control Conference (L4DC 2023)en
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen
pubs.organisational-group/Virginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sel23a.pdf
Size:
358.62 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: