Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions

dc.contributor.authorIslam, Nazrulen
dc.contributor.authorKim, Yonghyunen
dc.contributor.authorRoss, Julia M.en
dc.contributor.authorMarten, Mark R.en
dc.contributor.departmentChemical Engineeringen
dc.date.accessioned2021-02-04T22:10:13Zen
dc.date.available2021-02-04T22:10:13Zen
dc.date.issued2014-04-30en
dc.date.updated2021-02-04T22:10:09Zen
dc.description.abstractBackground: The biofilm forming bacterium Staphylococcus aureus is responsible for maladies ranging from severe skin infection to major diseases such as bacteremia, endocarditis and osteomyelitis. A flow displacement system was used to grow S. aureus biofilms in four physiologically relevant fluid shear rates (50, 100, 500 and 1000 s-1) to identify proteins that are associated with biofilm.Results: Global protein expressions from the membrane and cytosolic fractions of S. aureus biofilm cells grown under the above shear rate conditions are reported. Sixteen proteins in the membrane-enriched fraction and eight proteins in the cytosolic fraction showed significantly altered expression (p < 0.05) under increasing fluid shear. These 24 proteins were identified using nano-LC-ESI-MS/MS. They were found to be associated with various metabolic functions such as glycolysis / TCA pathways, protein synthesis and stress tolerance. Increased fluid shear stress did not influence the expression of two important surface binding proteins: fibronectin-binding and collagen-binding proteins.Conclusions: The reported data suggest that while the general metabolic function of the sessile bacteria is minimal under high fluid shear stress conditions, they seem to retain the binding capacity to initiate new infections. © 2014 Islam et al.; licensee BioMed Central Ltd.en
dc.description.versionPublished (Publication status)en
dc.format.extent12 page(s)en
dc.format.mediumElectronic-eCollectionen
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 21 (Article number)en
dc.identifier.doihttps://doi.org/10.1186/1477-5956-12-21en
dc.identifier.eissn1477-5956en
dc.identifier.issn1477-5956en
dc.identifier.issue1en
dc.identifier.other1477-5956-12-21 (PII)en
dc.identifier.pmid24855455 (pubmed)en
dc.identifier.urihttp://hdl.handle.net/10919/102251en
dc.identifier.volume12en
dc.language.isoenen
dc.publisherBMCen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectLife Sciences & Biomedicineen
dc.subjectBiochemical Research Methodsen
dc.subjectBiochemistry & Molecular Biologyen
dc.subjectBiofilmen
dc.subjectStaphylococcus aureusen
dc.subjectFlow chamberen
dc.subjectShear stressen
dc.subjectProteomicsen
dc.subjectBACTERIAL MOONLIGHTING PROTEINSen
dc.subjectFIBRONECTIN-BINDING PROTEINSen
dc.subjectCOLLAGEN ADHESINen
dc.subjectVIRULENCEen
dc.subjectIDENTIFICATIONen
dc.subjectMECHANISMSen
dc.subjectRESISTANCEen
dc.subjectADHERENCEen
dc.subjectKINETICSen
dc.subjectSURVIVALen
dc.subject06 Biological Sciencesen
dc.titleProteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditionsen
dc.title.serialProteome Scienceen
dc.typeArticle - Refereeden
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2014-04-17en
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE Administrationen
pubs.organisational-group/Virginia Techen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format