Information Freshness Optimization in Real-time Network Applications

TR Number

Date

2024-06-12

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

In recent years, the remarkable development in ubiquitous communication networks and smart portable devices spawned a wide variety of real-time applications that require timely information updates (e.g., autonomous vehicular systems, industrial automation systems, and live streaming services). These real-time applications all have one thing in common: they desire their knowledge of the information source to be as fresh as possible. In order to measure the freshness of information, a new metric, called the Age-of-Information (AoI) is proposed. AoI is defined as the time elapsed since the generation time of the freshest delivered update. This metric is influenced by both the inter-arrival time and the delay of the updates. As a result of these dependencies, the AoI metric exhibits distinct characteristics compared to traditional delay and throughput metrics.

In this dissertation, our goal is to optimize AoI under various real-time network applications. Firstly, we investigate a fundamental problem of how exactly various scheduling policies impact AoI performance. Though there is a large body of work studying the AoI performance under different scheduling policies, the use of the update-size information and its combinations with other information (such as arrival-time information and service preemption) to reduce AoI has still not been explored yet. Secondly, as a recently introduced measure of freshness, the relationship between AoI and other performance metrics remains largely ambiguous. We analyze the tradeoffs between AoI and additional performance metrics, including service performance and update cost, within real-world applications.

This dissertation is organized into three parts. In the first part, we realize that scheduling policies leveraging the update-size information can substantially reduce the delay, one of the key components of AoI. However, it remains largely unknown how exactly scheduling policies (especially those making use of update-size information) impact the AoI performance. To this end, we conduct a systematic and comparative study to investigate the impact of scheduling policies on the AoI performance in single-server queues and provide useful guidelines for the design of AoI-efficient scheduling policies.

In the second part, we analyze the tradeoffs between AoI and other performance metrics in real-world systems. Specifically, we focus on the following two important tradeoffs. (i) The tradeoff between service performance and AoI that arises in the data-driven real-time applications (e.g., Google Maps and stock trading applications). In these applications, the computing resource is often shared for processing both updates from information sources and queries from end users. Hence there is a natural tradeoff between service performance (e.g., response time to queries) and AoI (i.e., the freshness of data in response to user queries). To address this tradeoff, we begin by introducing a simple single-server two-queue model that captures the coupled scheduling between updates and queries. Subsequently, we design threshold-based scheduling policies to prioritize either updates or queries. Finally, we conduct a rigorous analysis of the performance of these threshold-based scheduling policies. (ii) The tradeoff between update cost and AoI that appear in the crowdsensing-based applications (e.g., Google Waze and GasBuddy). On the one hand, users are not satisfied if the responses to their requests are stale; on the other side, there is a cost for the applications to update their information regarding certain points of interest since they typically need to make monetary payments to incentivize users. To capture this tradeoff, we first formulate an optimization problem with the objective of minimizing the sum of the staleness cost (which is a function of the AoI) and the update cost, then we obtain a closed-form optimal threshold-based policy by reformulating the problem as a Markov decision process (MDP).

In the third part, we study the minimization of data freshness and transmission costs (e.g., energy cost) under an (arbitrary) time-varying wireless channel without and with machine learning (ML) advice. We consider a discrete-time system where a resource-constrained source transmits time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed cost, while not transmitting results in a staleness cost measured by the AoI. The source needs to balance the tradeoff between these transmission and staleness costs. To tackle this challenge, we develop a robust online algorithm aimed at minimizing the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they tend to be overly conservative and may perform poorly on average in typical scenarios. In contrast, ML algorithms, which leverage historical data and prediction models, generally perform well on average but lack worst-case performance guarantees. To harness the advantages of both approaches, we design a learning-augmented online algorithm that achieves two key properties: (i) consistency: closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness: providing a worst-case performance guarantee even when ML predictions are inaccurate.

Description

Keywords

Information freshness, Age-of-Information, latency, transmission cost, Internet of Things, optimization, machine learning algorithm, algorithm design

Citation