Bioimpedance spectroscopy of breast cancer cells: A microsystems approach

dc.contributor.authorSrinivasaraghavan, Vaishnavien
dc.contributor.committeechairAgah, Masouden
dc.contributor.committeememberZhu, Yizhengen
dc.contributor.committeememberLester, Luke F.en
dc.contributor.committeememberStrobl, Jeannine Susanen
dc.contributor.committeememberKelly, Deborah F.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2015-11-05T09:00:37Zen
dc.date.available2015-11-05T09:00:37Zen
dc.date.issued2015-11-04en
dc.description.abstractBioimpedance presents a versatile, label-free means of monitoring biological cells and their responses to physical, chemical and biological stimuli. Breast cancer is the second most common type of cancer among women in the United States. Although significant progress has been made in diagnosis and treatment of this disease, there is a need for robust, easy-to-use technologies that can be used for the identification and discrimination of critical subtypes of breast cancer in biopsies obtained from patients. This dissertation makes contributions in three major areas towards addressing the goal. First, we developed miniaturized bioimpedance sensors using MEMS and microfluidics technology that have the requisite traits for clinical use including reliability, ease-of-use, low-cost and disposability. Here, we designed and fabricated two types of bioimpedance sensors. One was based on electric cell-substrate impedance sensing (ECIS) to monitor cell adhesion based events and the other was a microfluidic device with integrated microelectrodes to examine the biophysical properties of single cells. Second, we examined a panel of triple negative breast cancer (TNBC) cell lines and a hormone therapy resistant model of breast cancer in order to improve our understanding of the bioimpedance spectra of breast cancer subtypes. Third, we explored strategies to improve the sensitivity of the microelectrodes to bioimpedance measurements from breast cancer cells. We investigated nano-scale coatings on the surface of the electrode and geometrical variations in a branched electrode design to accomplish this. This work demonstrates the promise of bioimpedance technologies in monitoring diseased cells and their responses to pharmaceutical agents, and motivates further research in customization of this technique for use in personalized medicine.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:6390en
dc.identifier.urihttp://hdl.handle.net/10919/63921en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMicroelectromechanical systems (MEMS)en
dc.subjectBioimpedanceen
dc.subjectMicroelectrode Arrays (MEA)en
dc.subjectElectrical Cell-substrate Impedance Sensing (ECIS)en
dc.subjectBreast Canceren
dc.subjectTriple Negative Breast Cancer (TNBC)en
dc.subjectNano-coatingsen
dc.subjectSingle cell analysisen
dc.subjectMicrofluidicsen
dc.titleBioimpedance spectroscopy of breast cancer cells: A microsystems approachen
dc.typeDissertationen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Srinivasaraghavan_V_D_2015.pdf
Size:
4.2 MB
Format:
Adobe Portable Document Format
Name:
Srinivasaraghavan_V_D_2015_support_1.zip
Size:
2.86 MB
Format:
Unknown data format
Description:
Supporting documents