Thin films of layered-structure (1-x)SrBi2Ta2O9-xBi(3)Ti(Ta1-yNby)O-9 solid solution for ferroelectric random access memory devices

Files

TR Number

Date

1997-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

AIP Publishing

Abstract

We report on the thin films of solid-solution material (1-x)SrBi2Ta2O9-xBi(3)Ti(Ta1-yNby)O-9 fabricated by a modified metalorganic solution deposition technique for ferroelectric random access memory devices. Using the modified technique, it was possible to obtain the pyrochlore free crystalline thin films at an annealing temperature as low as 600 degrees C. The solid-solution of layered perovskite materials helped us to significantly improve the ferroelectric properties, higher P-r and higher T-c, compared to SrBi2Ta2O9; a leading candidate material for memory applications. For example, the films with 0.7 SrBi2Ta2O9-0.3Bi(3)TiTaO(9) composition and annealed in the temperature range 650-750 degrees C exhibited 2 P-r and E-c values in the range 12.4-27.8 mu C/cm(2) and 68-80 kV/cm, respectively. The leakage current density was lower than 10(-8) A/cm(2) at an applied electric field of 200 kV/cm. The films exhibited good fatigue characteristics under bipolar stressing. (C) 1997 American Institute of Physics.

Description

Keywords

Ferroelectric materials, Ferroelectric thin films, Ferroelectric memories, Materials properties, Solid solutions

Citation

Desu, SB; Joshi, PC; Zhang, X; et al., "Thin films of layered-structure (1-x)SrBi2Ta2O9-xBi(3)Ti(Ta1-yNby)O-9 solid solution for ferroelectric random access memory devices," Appl. Phys. Lett. 71, 1041 (1997); http://dx.doi.org/10.1063/1.119721