Structural and optical properties of sulfur passivated epitaxial step-graded GaAs₁₋ySby materials
dc.contributor.author | Hudait, Mantu K. | en |
dc.contributor.author | Clavel, Michael B. | en |
dc.contributor.author | Saluru, Sarat K. | en |
dc.contributor.author | Liu, Jheng-Sin | en |
dc.contributor.author | Meeker, Michael A. | en |
dc.contributor.author | Khodaparast, Giti A. | en |
dc.contributor.author | Bodnar, Robert J. | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessioned | 2019-01-18T19:04:15Z | en |
dc.date.available | 2019-01-18T19:04:15Z | en |
dc.date.issued | 2018-11-15 | en |
dc.description.abstract | The impact of bulk and surface defect states on the vibrational and optical properties of step-graded epitaxial GaAs₁₋ySby (0 ≤ y ≤ 1) materials with and without chemical surface treatment by (NH₄)₂S was investigated. Tunable antimony (Sb) composition GaAs₁₋ySby epitaxial layers, grown by solid source molecular beam epitaxy (MBE), were realized on GaAs and Si substrates by varying key growth parameters (e.g., Sb/Ga flux ratio, growth temperature). Raman and photoluminescence (PL) spectroscopic analysis of (NH₄)₂S-treated GaAs₁₋ySby epitaxial layers revealed composition-independent Raman spectral widths and enhanced PL intensity (1.3x) following (NH₄)₂S surface treatment, indicating bulk defect-minimal epitaxy and a reduction in the surface recombination velocity corresponding to reduced surface defect sites, respectively. Moreover, quantification of the luminescence recombination mechanisms across a range of measurement temperatures and excitation intensities (i.e., varying laser power) indicate the presence of free-electron to neutral acceptor pair or Sb-defect-related recombination pathways, with detectable bulk defect recombination discernible only in binary GaSb PL spectra. In addition, PL analysis of the short- and long-term thermodynamic stability of sulfur-treated GaAs₁₋ySby/Al₂O₃ heterointerfaces revealed an absence of quantifiable atomic interdiffusion or native oxide formation. Leveraging the combined Raman and PL analysis herein, the quality of the heteroepitaxial step-graded epitaxial GaAs₁₋ySby materials can be optimized for optical devices. | en |
dc.format.extent | 19 pages | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1063/1.5028133 | en |
dc.identifier.uri | http://hdl.handle.net/10919/86771 | en |
dc.identifier.volume | 8 | en |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics | en |
dc.rights | Creative Commons Attribution-NonCommercial 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | en |
dc.title | Structural and optical properties of sulfur passivated epitaxial step-graded GaAs₁₋ySby materials | en |
dc.title.serial | AIP Advances | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1