Integrated Multimodal Analysis: Evaluating the Impacts of Chemotherapy and Electroporation-Based Therapy on Lymphatic and Blood Microvasculature in Cancer

dc.contributor.authorEsparza, Savieay Luisen
dc.contributor.committeechairMunson, Jennifer Meganen
dc.contributor.committeememberPompano, Rebecca Roseen
dc.contributor.committeememberVerbridge, Scotten
dc.contributor.committeememberAllen, Irving Coyen
dc.contributor.committeememberDavalos, Rafael V.en
dc.contributor.departmentDepartment of Biomedical Engineering and Mechanicsen
dc.date.accessioned2024-06-06T08:00:36Zen
dc.date.available2024-06-06T08:00:36Zen
dc.date.issued2024-06-05en
dc.description.abstractThe lymphatic and blood vascular systems are two important vessel networks that serve different roles in healthy states and in cancer. In breast cancer the most common cancer amongst women, mortality remains high despite increased treatment response due to metastatic spread, preferentially through the lymphatics. One aggressive subtype, triple negative breast cancer (TNBC) contributing to 15 to 30 percent of cases and is characterized by the absence of expression of three therapeutic biomarkers. As targeted therapy is limited, treatment relies on standard of care via surgery, radiotherapy, and chemotherapy with limited efficacy and increase in survival. Chemotherapies negatively alter the lymphatic vasculature benefiting the tumor, through lymphangiogenesis. This dissertation seeks to understand how the mechanisms of commonly used chemotherapeutics, like carboplatin, and a novel 2nd generation ablative therapy called High Frequency Irreversible Electroporation (H-FIRE), which utilizes electric pulses to ablate tumor cells, affect the lymphatic and blood microvasculature in the tumor, surrounding fat pad, tumor draining lymph node (TDLN) using multiple analysis methods. This occurred through three main methods 1) identification of oxidative stress effects of chemotherapeutic application of carboplatin on lymphatic endothelial cells in vitro, 2) characterization of lymphatic and blood microvascular dynamics in a 4T1 breast cancer mouse model treated with sub-ablative H-FIRE, 3) through the development of a novel habitat imaging method to identify treatment specific changes in the tumor draining lymph node, and the development of a hybrid agent-based model (ABM) to test cancer cell flow mediated invasion in brain cancer. Herin the work showed that carboplatin induced lymphatic phenotypic changes occurred through generation of reactive oxygen species dependent on VEGFR3 and was reversed through treatment with the antioxidant N-acetylcysteine. In the 4T1 model, sub ablation with H-FIRE induced temporal remodeling of the lymphatic and blood vasculature within the viable tumor, in the surrounding fat pad, and in the tumor draining lymph node over seven days, suggesting an optimal time of application of adjuvant therapy. The development of a habitat imaging analysis method to identify TDLN vascular habitats and the perturbation to treatment in a retrospective analysis of prior work. Lastly, the development of a hybrid ABM through the incorporation of experimentally measured fluid flow fields from dynamic contrast enhanced MRI imaging building upon existing work, and showing the usefulness in comparing mechanisms of cancer cell invasion mediated fluid flow. Altogether, this work presents novel insight into the lymphatic system in cancer within various treatments contexts and new methods of quantifying changes due to treatment. Hopefully, these findings can be used to further inform the field towards a more comprehensive understanding of treatment effects in breast cancer.en
dc.description.abstractgeneralThe lymphatic and blood vascular systems are two important vessel networks that serve different purposes in healthy states and in the disease called cancer. In breast cancer , a common form of cancer in women , spread of this cancer tends towards the lymphatic vasculature and eventually to other parts of the body. Triple negative breast cancer (TNBC) a less common, but more aggressive form, relies on clinical standard treatments with anti-tumor drugs called chemotherapies. These chemotherapies negatively alter the lymphatic vasculature to the tumors benefit, leaving a lack new methods of treatment. This dissertation seeks to understand how the mechanisms of commonly used chemotherapeutics and a new promising pulsed electric field therapy , High frequency Irreversible Electroporation (H-FIRE), change the lymphatic and blood vessels over time and in different locations using different tools. This occurred through three main methods 1) the effects on lymphatic vascular cells treated with chemotherapy, 2) in a breast cancer mouse model treated with H-FIRE, 3) in math models of the draining lymphatic organ, called the lymph node and an agent-based math model (ABM) of cancer cell movement due to fluid flow. The work showed that in the lymphatic cells, carboplatin a type of chemotherapeutic used to treat breast cancer, changed lymphatic vasculature through generating stress through oxidation and was reversed through treatment with an anti-oxidant. In the breast cancer mouse model, incomplete ablation with H-FIRE caused time dependent changes to the lymphatic and blood vasculature in the tumor, in the surrounding tissue, and in the lymph node over seven days. This work shows the novel findings of pulsed electric field therapy causing changes to the lymphatic vasculature. The creation of a new method of identifying habitats of the lymph node was used to compare changes to the lymphatic and blood vasculature to treatment. Lastly, the creation of an ABM added measured fluid flow maps from medical imaging methods to build upon existing work, and showed the usefulness in comparing mechanisms of cancer cell invasion due to fluid flow. Altogether, this work presents novel insight into the lymphatic system in cancer within after various treatments are applied and new methods of measuring these changes because of treatment using multiple methods. It is our hope that these findings can be used to further inform the field towards a more comprehensive understanding of treatment effects in breast cancer.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:39806en
dc.identifier.urihttps://hdl.handle.net/10919/119302en
dc.language.isoenen
dc.publisherVirginia Techen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectinterstitial fluid flowen
dc.subjecthigh frequency irreversible electroporationen
dc.subjectagent-based modelen
dc.subjectchemotherapyen
dc.subjectbreast canceren
dc.subjectlymphatic vasculatureen
dc.subjecthabitat imagingen
dc.subjectreactive oxygen speciesen
dc.subjectCCL21en
dc.titleIntegrated Multimodal Analysis: Evaluating the Impacts of Chemotherapy and Electroporation-Based Therapy on Lymphatic and Blood Microvasculature in Canceren
dc.typeDissertationen
thesis.degree.disciplineBiomedical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 2 of 2
Name:
Esparza_SL_D_2024.pdf
Size:
10.68 MB
Format:
Adobe Portable Document Format
Name:
Esparza_SL_D_2024_support_1.pdf
Size:
176.42 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents