High-Resolution Finite Fault Slip Inversion of the 2019 Ridgecrest Earthquake Using 3D Finite Element Modeling

dc.contributor.authorBarba-Sevilla, Magalien
dc.contributor.authorGlasscoe, Margaret T.en
dc.contributor.authorParker, Jayen
dc.contributor.authorLyzenga, Gregory A.en
dc.contributor.authorWillis, Michael J.en
dc.contributor.authorTiampo, Kristy F.en
dc.date.accessioned2024-02-21T19:51:00Zen
dc.date.available2024-02-21T19:51:00Zen
dc.date.issued2022-09-14en
dc.description.abstractThe 2019 Ridgecrest earthquake sequence manifested as one of the most complex fault surface ruptures observed in California in modern times. The M6.4 foreshock and M7.1 mainshock occurred on an intricate network of orthogonal and sub-parallel faults resulting in observable surface displacement and surface rupture captured by geodetic data. Here we present the application of a high-resolution 3D finite element model (FEM) approach to invert for the detailed fault slip of the entire sequence using complex rheology and fused coseismic Global Navigation Satellite System (GNSS) data with Sentinel-1 differential interferometric synthetic aperture radar and pixel offset data. The heterogeneous FEM and the fused geodetic data set of pixel offsets, interferograms, and GNSS data results in our optimal inversion solution. This preferred solution is a complex, high-resolution non-planar slip model of both the M6.4 and M7.1 events that features three main regions of large slip (6.9+ m), with depths ranging from 2 to 10 km. The regions of slip are bounded by the mainshock hypocenter and the mainshock aftershocks and appear to be related to spatially varying rheological properties. We successfully reproduce a localized region of observed subsidence in the northern portion of the primary fault through the inclusion of a curved fault strand with a significant dip-slip component. The curved fault strand is the site of our maximum slip of 7.4 m at a depth of 4.2 km. The results demonstrate a robust fit from a more complete, detailed model for the entire seismogenic zone with reasonable computational cost, providing new insights into the governing rheologic and structural processes.en
dc.description.versionPublished versionen
dc.format.extent25 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN e2022JB024404 (Article number)en
dc.identifier.doihttps://doi.org/10.1029/2022JB024404en
dc.identifier.eissn2169-9356en
dc.identifier.issn2169-9313en
dc.identifier.issue9en
dc.identifier.urihttps://hdl.handle.net/10919/118102en
dc.identifier.volume127en
dc.language.isoenen
dc.publisherAmerican Geophysical Unionen
dc.rightsPublic Domain (U.S.)en
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/en
dc.subjectfinite element modelen
dc.subjectRidgecrest earthquakeen
dc.subjectfused dataen
dc.subjectDInSARen
dc.subjectcomplex rheologyen
dc.subjectpixel offsetsen
dc.titleHigh-Resolution Finite Fault Slip Inversion of the 2019 Ridgecrest Earthquake Using 3D Finite Element Modelingen
dc.title.serialJournal of Geophysical Research-Solid Earthen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Geosciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
High-Resolution_Finite_Fault_Slip_Inversion_of_the_2019_Ridgecrest_Earthquake_Using_3D_Finite_Element_Modeling.pdf
Size:
6.72 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: