Modal Analysis of a Discrete Tire Model and Tire Dynamic Response Rolling Over Short Wavelength Road Profiles

TR Number
Date
2022-09-19
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Obtaining the modal parameters of a deflected and rolling tire represents a challenge due to the complex vibration characteristics that cause the tire's symmetry distortion and the natural frequencies' bifurcation phenomena. The modal parameters are usually extracted using a detailed finite element model. The main issue with full modal models (FEA, for example) is the inability to integrate the tire modal model with the vehicle models to tune the suspension system for optimal ride comfort. An in-plane rigid–elastic-coupled tire model was used to examine the 200 DOF finite difference method (FDM) modal analysis accuracy under non-ground contact and non-rotating conditions. The discrete in-plane rigid–elastic-coupled tire model was modified to include the contact patch restriction, centrifugal force, Doppler, and Coriolis effects, covering a range of 0-300 Hz. As a result, the influence of the contact patch and the rotating tire conditions on the natural frequencies and modes were obtained through modal analysis. The in-plane rigid–elastic-coupled modal model with varying conditions was created that connects any two DOFs around the tire's tread or sidewall as inputs or outputs. The vertical movement of the wheel was incorporated into the in-plane rigid–elastic-coupled tire modal model to extract the transfer function (TF) that connects road irregularities as an input to the wheel's vertical movement as an output. The TF was utilized in a quasi-static manner to obtain the tire's enveloping characteristics rolling over short wavelength obstacles as a direct function of vertical wheel displacement under varying contact patch length constraints. The tire modal model was implemented with the quarter car model to obtain the vehicle response rolling over short wavelength obstacles. Finally, a sensitivity analysis was performed to examine the influence of tire parameters and pretension forces on natural frequencies.

Description
Keywords
Euler-Bernoulli beam; Finite Difference Method; tire modal analysis; beam on elastic foundation; tire modeling; Short wavelength road profiles; tire enveloping; ride comfort; vehicle vertical dynamics
Citation