Application of sub-micrometer vibrations to mitigate bacterial adhesion
dc.contributor.author | Paces, Will R. | en |
dc.contributor.author | Holmes, Hal R. | en |
dc.contributor.author | Vlaisavljevich, Eli | en |
dc.contributor.author | Snyder, Katherine L. | en |
dc.contributor.author | Tan, Ee Lim | en |
dc.contributor.author | Rajachar, Rupak M. | en |
dc.contributor.author | Ong, Keat Ghee | en |
dc.contributor.department | Biomedical Engineering and Mechanics | en |
dc.coverage.spatial | Switzerland | en |
dc.date.accessioned | 2017-11-14T21:01:08Z | en |
dc.date.available | 2017-11-14T21:01:08Z | en |
dc.date.issued | 2014-03-11 | en |
dc.description.abstract | As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection. | en |
dc.description.version | Published version | en |
dc.format.extent | 15 - 26 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.3390/jfb5010015 | en |
dc.identifier.issn | 2079-4983 | en |
dc.identifier.issue | 1 | en |
dc.identifier.uri | http://hdl.handle.net/10919/80390 | en |
dc.identifier.volume | 5 | en |
dc.language.iso | en | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/24956354 | en |
dc.rights | Creative Commons Attribution 3.0 Unported | en |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | en |
dc.title | Application of sub-micrometer vibrations to mitigate bacterial adhesion | en |
dc.title.serial | Journal of Functional Biomaterials | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dcterms.dateAccepted | 2014-02-28 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Biomedical Engineering and Mechanics | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Application of sub-micrometer vibrations to mitigate bacterial adhesion.pdf
- Size:
- 482.95 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
- Name:
- VTUL_Distribution_License_2016_05_09.pdf
- Size:
- 18.09 KB
- Format:
- Adobe Portable Document Format
- Description: