Inhomogeneous, Anisotropic Turbulence Ingestion Noise in Two Open Rotor Configurations

TR Number

Date

2020-10-20

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Two rotor configurations with different non-uniform inflows were studied: a rotor ingesting the wake of an upstream cylinder and a rotor ingesting a thick axially symmetric boundary layer from an upstream centerbody. In both cases, the undisturbed inflow was measured without the rotor present in order to characterize the inflow, in particular to calculate the unsteady upwash velocity distribution at the location of the rotor. In addition, detailed acoustic measurements were completed using a 251-channel large-area microphone array. In all, over 400 conditions covering different advance ratios, angles of yaw, and inflow conditions were measured. Measurements of the sound show that the source has a complex directivity, different from that of a streamwise aligned dipole, due to the inhomogeneous unsteady upwash distribution. In addition, observers at different far field locations will perceive sources from different locations on the rotor disk. The directivity is a function of both the rotor geometry and turbulent inflow. A simplified model of the sound source was developed using these inputs and accurately predicts trends observed in the far field noise. For the cylinder wake ingestion case, on-blade measurements of the flow field show that the wake is drawn to the center of the rotor disk with increasing thrust. This is particularly noticeable if the wake does not strike the center of the rotor disk. The effects of this flow distortion on the far field directivity are well predicted by the model. The effects of yaw to rotate the produced sound field can be inferred from this model as well. A novel beamforming procedure was used to isolate sources across the face of the rotor for the cylinder wake ingestion case for an upstream observer position. This method may be used to isolate different sound sources on a rotor if multiple sources are present or if different regions of the rotor disk need to be isolated. The directivity of a rotor ingesting an axially symmetric boundary layer is far less complex than the ingestion of a two-dimensional cylinder wake, but measurements still show the perceived source location shift with observer location. Overall, the proposed noise modeling technique is an efficient method to predict the directivity of turbulence ingestion noise for inhomogeneous inflows. This can enable quick absolute noise predictions at all far field locations using only a single point measurement or far field noise prediction to establish absolute levels.

Description

Keywords

turbulence ingestion noise, axisymmetric turbulent boundary layer, cylinder wake, acoustic directivity, phased microphone array

Citation