VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Identifying sensors-based parameters associated with fall risk in community-dwelling older adults: an investigation and interpretation of discriminatory parameters

dc.contributor.authorWang, Xuanen
dc.contributor.authorCao, Junjieen
dc.contributor.authorZhao, Qizhengen
dc.contributor.authorChen, Mantingen
dc.contributor.authorLuo, Jiajiaen
dc.contributor.authorWang, Hailiangen
dc.contributor.authorYu, Lishaen
dc.contributor.authorTsui, Kwok-Leungen
dc.contributor.authorZhao, Yangen
dc.date.accessioned2024-02-06T13:11:27Zen
dc.date.available2024-02-06T13:11:27Zen
dc.date.issued2024-02-01en
dc.date.updated2024-02-04T04:20:45Zen
dc.description.abstractBackground: Falls pose a severe threat to the health of older adults worldwide. Determining gait and kinematic parameters that are related to an increased risk of falls is essential for developing effective intervention and fall prevention strategies. This study aimed to investigate the discriminatory parameter, which lay an important basis for developing effective clinical screening tools for identifying high-fall-risk older adults. Methods: Forty-one individuals aged 65 years and above living in the community participated in this study. The older adults were classified as high-fall-risk and low-fall-risk individuals based on their BBS scores. The participants wore an inertial measurement unit (IMU) while conducting the Timed Up and Go (TUG) test. Simultaneously, a depth camera acquired images of the participants’ movements during the experiment. After segmenting the data according to subtasks, 142 parameters were extracted from the sensor-based data. A t-test or Mann-Whitney U test was performed on the parameters for distinguishing older adults at high risk of falling. The logistic regression was used to further quantify the role of different parameters in identifying high-fall-risk individuals. Furthermore, we conducted an ablation experiment to explore the complementary information offered by the two sensors. Results: Fifteen participants were defined as high-fall-risk individuals, while twenty-six were defined as low-fall-risk individuals. 17 parameters were tested for significance with p-values less than 0.05. Some of these parameters, such as the usage of walking assistance, maximum angular velocity around the yaw axis during turn-to-sit, and step length, exhibit the greatest discriminatory abilities in identifying high-fall-risk individuals. Additionally, combining features from both devices for fall risk assessment resulted in a higher AUC of 0.882 compared to using each device separately. Conclusions: Utilizing different types of sensors can offer more comprehensive information. Interpreting parameters to physiology provides deeper insights into the identification of high-fall-risk individuals. High-fall-risk individuals typically exhibited a cautious gait, such as larger step width and shorter step length during walking. Besides, we identified some abnormal gait patterns of high-fall-risk individuals compared to low-fall-risk individuals, such as less knee flexion and a tendency to tilt the pelvis forward during turning.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Geriatrics. 2024 Feb 01;24(1):125en
dc.identifier.doihttps://doi.org/10.1186/s12877-024-04723-wen
dc.identifier.urihttps://hdl.handle.net/10919/117861en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleIdentifying sensors-based parameters associated with fall risk in community-dwelling older adults: an investigation and interpretation of discriminatory parametersen
dc.title.serialBMC Geriatricsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12877_2024_Article_4723.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: