VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

On the Effects of Directional Bin Size when Simulating Large Offshore Wind Farms with CFD

dc.contributorLoughborough Universityen
dc.contributor.authorArgyle, Peteren
dc.contributor.authorWatson, Simonen
dc.date.accessioned2015-07-28T18:27:04Zen
dc.date.available2015-07-28T18:27:04Zen
dc.date.issued2015-07-21en
dc.description.abstractThe most significant difference to an offshore wind farm resource assessment compared to onshore locations is the lower surface roughness values resulting from the lack of vegetation and terrain. As such, turbine wakes take longer to dissipate, and thus have a greater significance for the mean wind speeds and turbulence intensity encountered by turbines downstream. The greater influence of turbine wakes offshore, combined with the often regular turbine layouts of offshore farms, result in significant losses in power generation, and thus asset value, when the wind blows along a line of turbines. To reduce the risk to financial investment, computer simulations are often run to predict the expected wake losses of wind farms before they are built. As using Computational Fluid Dynamics (CFD) models to simulate numerous scenarios can be time consuming, it is important to use best practice to minimise the number of runs required to accurately capture the farm wake loss. This work investigates the number of simulations required to predict the production losses due to turbine wakes for a single scenario to an acceptable accuracy without compromising on the time required for such an investigation.en
dc.description.notesSession 7B - Atmosphere/Turbine/Wake Interactionsen
dc.description.notesIncludes paper and PowerPoint slidesen
dc.description.sponsorshipE.ON. EPSRC CASE awarden
dc.description.sponsorshipEPSRC Supergen Wind Energy Technologies Consortium. Grant EP/H018662/1en
dc.format.extent2 pagesen
dc.format.mimetypeapplication/vnd.ms-powerpointen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationArgyle, P., & Watson, S. (2015, July). On the effects of directional bin size when simulating large offshore wind farms with cfd. Paper presented at the North American Wind Energy Academy 2015 Symposium, Blacksburg, VA.en
dc.identifier.urihttp://hdl.handle.net/10919/54662en
dc.language.isoen_USen
dc.publisherVirginia Techen
dc.relation.ispartofNorth American Wind Energy Academy 2015 Symposiumen
dc.rightsIn Copyrighten
dc.rights.holderArgyle, Peteren
dc.rights.holderWatson, Simonen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleOn the Effects of Directional Bin Size when Simulating Large Offshore Wind Farms with CFDen
dc.typePresentationen
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 3 of 3
Name:
2_Argyle_etal.pptx
Size:
5.72 MB
Format:
Microsoft Powerpoint XML
Loading...
Thumbnail Image
Name:
2_Argyle_etal.pdf
Size:
2.39 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2_Argyle_etal_Paper.pdf
Size:
181.98 KB
Format:
Adobe Portable Document Format