The role of the perinexus in Long QT Syndrome Type 3
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Gain of function of cardiac voltage-gated sodium channel (Nav1.5) leads to Long QT Syndrome Type 3 (LQT3). LQT3 phenotype can be exacerbated by expanding the perinexus, which is an intercellular nanodomain with high density of Nav1.5 in the intercalated disc. Following this finding, we found that elevating extracellular sodium and widening the perinexus synergistically exacerbated LQT3 phenotype, Importantly, we also found that perinexal expansion increases the susceptibility to cardiac arrest in aged LQT3, which demonstrated that perinexal expansion is an arrhythmogenic risk especially in aged LQT3 patients. Furthermore, we observed that the perinexus narrows with aging and conceals LQT3 phenotype, which suggests that perinexal narrowing may have a cardio-protective role during aging in LQT3. Surprisingly, following the finding of the synergistic effect of extracellular sodium elevation and perinexal widening on LQT3 phenotype in drug-induced LQT3 guinea pig hearts, we found that this synergistic effect was not observed in genetically-modified LQT3 mouse hearts, which is due to high sodium also increasing transient outward potassium current (Ito). In summary, the whole project investigated the role of the perinexus in LQT3 from different conditions including sodium, aging and species. The findings in this project discovered the importance of perinexal expansion in LQT3 and also the involvement of Ito in sodium regulating LQT3 phenotype in hearts which functionally express Ito channels. Therefore, a LQT3 animal model which has similar electrophysiology close to human may be a great option for translational purpose.