Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The Ediacaran Period is characterized by the most profound negative carbon isotope (δ13C) excursion in Earth history, the ShuramExcursion. Various hypotheses – including the massive oxidation of dissolved organic carbon (DOC) in the oceans, the weathering of terrestrial organic carbon, or the release and oxidation of methane hydrates and/or expelled petroleum from the subsurface – have been proposed as sources of the 13C-depleted carbon. More recently, it has been suggested that global-scale precipitation of early authigenic carbonates, driven by anaerobicmicrobial metabolism in unconsolidated sediments, may have caused the Shuram Excursion, but empirical evidence is lacking. Here we present a comprehensive analysis of a Shuram-associated interval from the uppermost Doushantuo Formation in South China. Our study reveals petrographic evidence of methane-derived authigenic calcite (formed as early diagenetic cements and nodules) that are remarkably depleted in 13C – suggesting a buildup of alkalinity in pore fluids through the anaerobic oxidation of methane (AOM) – and systematically depleted in 18O relative to co-occurring dolomite. Early authigenesis of these minerals is likely to be driven by increased microbial sulfate reduction, triggered by enhanced continental weathering in the context of a marked rise in atmospheric oxygen levels. In light of the finding of methane-derived authigenic carbonates at Zhongling, and based on our basin-scale stratigraphic correlation, we hypothesize that the marked 13C and 18O depletion (including their co-variation noted worldwide) in the Shuram Excursion may reflect an episode of authigenesis occurring within a sulfate–methane transition zone (SMTZ). If true, the Shuram Excursion was then a global biogeochemical response to enhanced seawater sulfate concentration in the Ediacaran ocean driven by the Neoproterozoic oxidation of surface environments. This paleo-oceanographic transition may have therefore paved theway for subsequent evolution and diversification of animals. Our study highlights the significance of an integrated approach that combines petrography, mineralogy, and texture-specificmicro-drilling geochemistry in chemostratigraphic studies.