Technoeconomic Analysis of Negative Emissions Bioenergy with Carbon Capture and Storage through Pyrolysis and Bioenergy District Heating Infrastructure

dc.contributor.authorLim, Theodore C.en
dc.contributor.authorCuellar, Amandaen
dc.contributor.authorLangseth, Kyleen
dc.contributor.authorWaldon, Jefferson L.en
dc.date.accessioned2022-01-22T18:58:20Zen
dc.date.available2022-01-22T18:58:20Zen
dc.date.issued2022-01-11en
dc.date.updated2022-01-22T18:58:18Zen
dc.description.abstractBioenergy with carbon capture and storage (BECCS) has been identified as a cost-effective negative emission technology that will be necessary to limit global warming to 1.5 °C targets. However, the study of BECCS deployment has mainly focused on large-scale, centralized facilities and geologic sequestration. In this study, we perform technoeconomic analysis of BECCS through pyrolysis technology within a district heating system using locally grown switchgrass. The analysis is based on a unique case study of an existing switchgrass-fueled district heating system in the rural southeastern United States and combines empirical daily energy data with a retrospective analysis of add-on pyrolysis technology with biochar storage. We show that at current heating oil and switchgrass prices, pyrolysis-bioenergy (PyBE) and pyrolysis BECCS (PyBECCS) can each reach economic parity with a fossil fuel-based system when the prices of carbon is $116/Mg CO<sub>2</sub>-eq and $51/Mg CO<sub>2</sub>-eq, respectively. In addition, each can reach parity with a direct combustion bioenergy (BE) system when the prices of carbon is $264/Mg CO<sub>2</sub>-eq and $212/Mg CO<sub>2</sub>-eq, respectively. However, PyBECCS cannot reach economic parity with BE without revenue from carbon sequestration, while PyBE can, and in some cases, PyBECCS could counterintuitively require more reliance on fossil fuels than both the PyBE case and BE.en
dc.description.versionAccepted versionen
dc.format.mimetypeapplication/pdfen
dc.identifieracs.est.1c03478 (Article number)en
dc.identifier.doihttps://doi.org/10.1021/acs.est.1c03478en
dc.identifier.eissn1520-5851en
dc.identifier.issn0013-936Xen
dc.identifier.orcidLim, Theodore [0000-0002-7896-4964]en
dc.identifier.pmid35015535en
dc.identifier.urihttp://hdl.handle.net/10919/107856en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/35015535en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectbiocharen
dc.subjectbioenergy and carbon capture and storage (BECCS)en
dc.subjectcarbon dioxide removal (CDR)en
dc.subjectdecarbonizationen
dc.subjectdistrict heatingen
dc.subjectenergy infrastructure transitionen
dc.subjectlifecycle analysis (LCA)en
dc.subjectswitchgrassen
dc.subjectEnvironmental Sciencesen
dc.titleTechnoeconomic Analysis of Negative Emissions Bioenergy with Carbon Capture and Storage through Pyrolysis and Bioenergy District Heating Infrastructureen
dc.title.serialEnvironmental Science & Technologyen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Architecture and Urban Studiesen
pubs.organisational-group/Virginia Tech/Architecture and Urban Studies/School of Public and International Affairsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Architecture and Urban Studies/CAUS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_es&t_lim_etal_local_scale_beccs_accepted_manusc.pdf
Size:
466.63 KB
Format:
Adobe Portable Document Format
Description:
Accepted version