Improving the performance of cryogenic calorimeters with nonlinear multivariate noise cancellation algorithms

dc.contributor.authorVetter, K. J.en
dc.contributor.authorBeretta, M.en
dc.contributor.authorCapelli, C.en
dc.contributor.authorCorso, F. D.en
dc.contributor.authorHansen, E. V.en
dc.contributor.authorHuang, R. G.en
dc.contributor.authorKolomensky, Yu. G.en
dc.contributor.authorMarini, L.en
dc.contributor.authorNutini, I.en
dc.contributor.authorSingh, V.en
dc.contributor.authorTorres, A.en
dc.contributor.authorWelliver, B.en
dc.contributor.authorZimmermann, S.en
dc.contributor.authorZucchelli, S.en
dc.date.accessioned2024-03-11T16:49:30Zen
dc.date.available2024-03-11T16:49:30Zen
dc.date.issued2024-03-08en
dc.date.updated2024-03-10T04:08:47Zen
dc.description.abstractState-of-the-art physics experiments require high-resolution, low-noise, and low-threshold detectors to achieve competitive scientific results. However, experimental environments invariably introduce sources of noise, such as electrical interference or microphonics. The sources of this environmental noise can often be monitored by adding specially designed “auxiliary devices” (e.g. microphones, accelerometers, seismometers, magnetometers, and antennae). A model can then be constructed to predict the detector noise based on the auxiliary device information, which can then be subtracted from the true detector signal. Here, we present a multivariate noise cancellation algorithm which can be used in a variety of settings to improve the performance of detectors using multiple auxiliary devices. To validate this approach, we apply it to simulated data to remove noise due to electromagnetic interference and microphonic vibrations. We then employ the algorithm to a cryogenic light detector in the laboratory and show an improvement in the detector performance. Finally, we motivate the use of nonlinear terms to better model vibrational contributions to the noise in thermal detectors. We show a further improvement in the performance of a particular channel of the CUORE detector when using the nonlinear algorithm in combination with optimal filtering techniques.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationThe European Physical Journal C. 2024 Mar 08;84(3):243en
dc.identifier.doihttps://doi.org/10.1140/epjc/s10052-024-12595-yen
dc.identifier.urihttps://hdl.handle.net/10919/118304en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleImproving the performance of cryogenic calorimeters with nonlinear multivariate noise cancellation algorithmsen
dc.title.serialThe European Physical Journal Cen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10052_2024_Article_12595.pdf
Size:
4.62 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: