Synthesis of Small Molecule and Polymeric Systems for the Controlled Release of Sulfur Signaling Molecules

dc.contributor.authorPowell, Chadwick R.en
dc.contributor.committeechairMatson, John B.en
dc.contributor.committeememberSantos, Webster L.en
dc.contributor.committeememberGibson, Harry W.en
dc.contributor.committeememberRiffle, Judy S.en
dc.contributor.departmentChemistryen
dc.date.accessioned2021-02-04T07:00:25Zen
dc.date.available2021-02-04T07:00:25Zen
dc.date.issued2019-08-13en
dc.description.abstractHydrogen sulfide (H₂S) was recognized as a critical signaling molecule in mammals nearly two decades ago. Since this discovery biologists and chemists have worked in concert to demonstrate the physiological roles of H₂S as well as the therapeutic benefit of exogenous H₂S delivery. As the understanding of H₂S physiology has increased, the role(s) of other sulfur-containing molecules as potential players in cellular signaling and redox homeostasis has begun to emerge. This creates new and exciting challenges for chemists to synthesize compounds that release a signaling compound in response to specific, biologically relevant stimuli. Preparation of these signaling compound donor molecules will facilitate further elucidation of the complex chemical interplay within mammalian cells. To this end we report on two systems for the sustained release of H₂S, as well as other sulfur signaling molecules. The first system discussed is based on the N-thiocarboxyanhydride (NTA) motif. NTAs were demonstrated to release carbonyl sulfide (COS), a potential sulfur signaling molecule, in response to biologically available nucleophiles. The released COS is shown to be rapidly converted to H₂S in the presence of the ubiquitous enzyme carbonic anhydrase (CA). A synthetic route that affords NTAs with reactive functionalities was devised and the functional "parent" NTAs were successfully conjugated to a variety of substrates, ranging from small molecules to polymers. These functional NTAs provide a platform from which a library of NTA-based COS/H₂S may be readily prepared convergently in an effort to move towards H₂S-releasing drug and polymer conjugates. Additionally, preliminary in vitro cytotoxicity studies indicate that NTAs are noncytotoxic at concentrations above 100 µM. The second system discussed in this dissertation leverages the 1,6-benzyl elimination reaction (or self-immolative reaction) to facilitate the release of a persulfide (R–SSH) from a small molecule prodrug platform as well as a separate system that releases COS/H₂S from a polymer. The self-immolative persulfide prodrug was designed to be responsive to reactive oxygen species (ROS) and demonstrates efficacy as an antioxidant in vitro. Furthermore, the polymeric COS/H₂S self-immolative system was designed to respond to reducing agents, including H₂S itself, and shows promise as a H₂S signal amplification platform.en
dc.description.abstractgeneralHydrogen sulfide (H₂S) has long been recognized as a malodorous and toxic byproduct of industrial chemical processes. However, the discovery of H₂S as a key signaling molecule in mammals has drastically shifted the paradigm of H₂S research over the last two decades. Research into the production and roles of H₂S in the body is ongoing, but has pointed to the implication of changes in H₂S production to the onset of a variety of disease states, including cardiovascular disease and Alzheimer’s. As alterations in the body’s production of H₂S have been correlated to certain disease states, collaborative research efforts among biologists and chemists have demonstrated the utility of H₂S-based therapeutics in helping to alleviate these disease states. Our understanding of the roles of H₂S in the body, and potential benefits derived from H₂S-releasing drugs, can only continue to advance with the development and improvement of H₂S releasing compounds. The first portion of this dissertation focuses on the synthesis of a new class of H₂S-releasing compounds, termed N-thiocarboxyanhydrides (NTAs). NTAs release H₂S through an intermediate sulfur-containing molecule, carbonyl sulfide (COS), which may have signaling properties independent of H₂S. The COS that is released from the NTAs is rapidly converted to H₂S by the action of the ubiquitous enzyme carbonic anhydrase. A variety of functional NTAs were synthesized, which in turn were used to prepare a small library of NTA-based COS/H₂S releasing compounds. This work informs the preparation of H₂S-drug or H₂S-polymer conjugates. The second portion of this dissertation examines a class of compounds broadly termed self-immolative prodrugs. The self-immolative prodrug platform was leveraged to release H₂S, or persulfides (R–SSH), another class of sulfur-containing molecules of biological interest. The self-immolative persulfide prodrug system was designed to be responsive to reactive oxygen species (ROS), a harmful cellular byproduct. The persulfide donor was successful in mitigating the harmful effects of ROS in heart cells. Independently, a polymeric self-immolative H₂S releasing system was designed to depolymerize in the presence of H₂S, resulting in the generation of 6-8-fold excess of H₂S upon depolymerization. We envision the self-immolative H₂S-releasing polymer will show promise in biological applications where a vast excess of H₂S is needed rapidly.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:20241en
dc.identifier.urihttp://hdl.handle.net/10919/102217en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjecthydrogen sulfide (H₂S)en
dc.subjectcarbonyl sulfide (COS)en
dc.subjectpersulfideen
dc.subject1,6-benzyl eliminationen
dc.subjectring-openingen
dc.titleSynthesis of Small Molecule and Polymeric Systems for the Controlled Release of Sulfur Signaling Moleculesen
dc.typeDissertationen
thesis.degree.disciplineChemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Powell_CR_D_2019.pdf
Size:
7.81 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Powell_CR_D_2019_support_1.pdf
Size:
850.63 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents