Nonlinear Parametric Inversion Using Interpolatory Model Reduction
dc.contributor.author | de Sturler, Eric | en |
dc.contributor.author | Gugercin, Serkan | en |
dc.contributor.author | Kilmer, Misha E. | en |
dc.contributor.author | Chaturantabut, Saifon | en |
dc.contributor.author | Beattie, Christopher A. | en |
dc.contributor.author | O'Connell, Meghan | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2016-06-10T22:22:37Z | en |
dc.date.available | 2016-06-10T22:22:37Z | en |
dc.date.issued | 2015-01-01 | en |
dc.description.abstract | Nonlinear parametric inverse problems appear in several prominent applications; one such application is Diffuse Optical Tomography (DOT) in medical image reconstruction. Such inverse problems present huge computational challenges, mostly due to the need for solving a sequence of large-scale discretized, parametrized, partial diferential equations (PDEs) in the forward model. In this paper, we show how interpolatory parametric model reduction can significantly reduce the cost of the inversion process in DOT by drastically reducing the computational cost of solving the forward problems. The key observation is that function evaluations for the underlying optimization problem may be viewed as transfer function evaluations along the imaginary axis; a similar observation holds for Jacobian evaluations as well. This motivates the use of system-theoretic model order reduction methods. We discuss the construction and use of interpolatory parametric reduced models as surrogates for the full forward model. Within the DOT setting, these surrogate models can approximate both the cost functional and the associated Jacobian with very little loss of accuracy while significantly reducing the cost of the overall inversion process. Four numerical examples illustrate the effciency of the proposed approach. Although we focus on DOT in this paper, we believe that our approach is applicable much more generally. | en |
dc.description.version | Published version | en |
dc.format.extent | B495 - B517 (23) page(s) | en |
dc.identifier.doi | https://doi.org/10.1137/130946320 | en |
dc.identifier.issn | 1064-8275 | en |
dc.identifier.issue | 3 | en |
dc.identifier.uri | http://hdl.handle.net/10919/71333 | en |
dc.identifier.volume | 37 | en |
dc.language | English | en |
dc.publisher | Siam Publications | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000357406500007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Mathematics, Applied | en |
dc.subject | Mathematics | en |
dc.subject | DOT | en |
dc.subject | PaLS | en |
dc.subject | model reduction | en |
dc.subject | rational interpolation | en |
dc.subject | REDUCED-ORDER MODELS | en |
dc.subject | LEVEL SET METHODS | en |
dc.subject | PARTIAL-DIFFERENTIAL-EQUATIONS | en |
dc.subject | REAL-TIME SOLUTION | en |
dc.subject | PROBABILISTIC ANALYSIS | en |
dc.subject | BALANCED TRUNCATION | en |
dc.subject | OPTICAL MAMMOGRAPHY | en |
dc.subject | SHAPE OPTIMIZATION | en |
dc.subject | DYNAMICAL-SYSTEMS | en |
dc.subject | TOMOGRAPHY | en |
dc.title | Nonlinear Parametric Inversion Using Interpolatory Model Reduction | en |
dc.title.serial | Siam Journal On Scientific Computing | en |
dc.type | Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/Mathematics | en |