VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Nonlinear Parametric Inversion Using Interpolatory Model Reduction

dc.contributor.authorde Sturler, Ericen
dc.contributor.authorGugercin, Serkanen
dc.contributor.authorKilmer, Misha E.en
dc.contributor.authorChaturantabut, Saifonen
dc.contributor.authorBeattie, Christopher A.en
dc.contributor.authorO'Connell, Meghanen
dc.contributor.departmentMathematicsen
dc.date.accessioned2016-06-10T22:22:37Zen
dc.date.available2016-06-10T22:22:37Zen
dc.date.issued2015-01-01en
dc.description.abstractNonlinear parametric inverse problems appear in several prominent applications; one such application is Diffuse Optical Tomography (DOT) in medical image reconstruction. Such inverse problems present huge computational challenges, mostly due to the need for solving a sequence of large-scale discretized, parametrized, partial diferential equations (PDEs) in the forward model. In this paper, we show how interpolatory parametric model reduction can significantly reduce the cost of the inversion process in DOT by drastically reducing the computational cost of solving the forward problems. The key observation is that function evaluations for the underlying optimization problem may be viewed as transfer function evaluations along the imaginary axis; a similar observation holds for Jacobian evaluations as well. This motivates the use of system-theoretic model order reduction methods. We discuss the construction and use of interpolatory parametric reduced models as surrogates for the full forward model. Within the DOT setting, these surrogate models can approximate both the cost functional and the associated Jacobian with very little loss of accuracy while significantly reducing the cost of the overall inversion process. Four numerical examples illustrate the effciency of the proposed approach. Although we focus on DOT in this paper, we believe that our approach is applicable much more generally.en
dc.description.versionPublished versionen
dc.format.extentB495 - B517 (23) page(s)en
dc.identifier.doihttps://doi.org/10.1137/130946320en
dc.identifier.issn1064-8275en
dc.identifier.issue3en
dc.identifier.urihttp://hdl.handle.net/10919/71333en
dc.identifier.volume37en
dc.languageEnglishen
dc.publisherSiam Publicationsen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000357406500007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMathematics, Applieden
dc.subjectMathematicsen
dc.subjectDOTen
dc.subjectPaLSen
dc.subjectmodel reductionen
dc.subjectrational interpolationen
dc.subjectREDUCED-ORDER MODELSen
dc.subjectLEVEL SET METHODSen
dc.subjectPARTIAL-DIFFERENTIAL-EQUATIONSen
dc.subjectREAL-TIME SOLUTIONen
dc.subjectPROBABILISTIC ANALYSISen
dc.subjectBALANCED TRUNCATIONen
dc.subjectOPTICAL MAMMOGRAPHYen
dc.subjectSHAPE OPTIMIZATIONen
dc.subjectDYNAMICAL-SYSTEMSen
dc.subjectTOMOGRAPHYen
dc.titleNonlinear Parametric Inversion Using Interpolatory Model Reductionen
dc.title.serialSiam Journal On Scientific Computingen
dc.typeArticleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1311.0922v1.pdf
Size:
863.87 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: