Use of a wearable electromyography armband to detect lift-lower tasks and classify hand loads

dc.contributor.authorTaori, Sakshien
dc.contributor.authorLim, Solen
dc.date.accessioned2025-04-28T13:05:21Zen
dc.date.available2025-04-28T13:05:21Zen
dc.date.issued2024-09en
dc.description.abstractWe used an armband with embedded surface electromyography (sEMG) electrodes, together with machine-learning (ML) models, to automatically detect lifting-lowering activities and classify hand loads. Nine healthy participants (4 male and 5 female) completed simulated lifting-lowering tasks in various conditions and with two different hand loads (2.3 and 6.8 kg). We compared three sEMG signal feature sets (i.e., time, frequency, and a combination of both domains) and three ML classifiers (i.e., Random Forest, Support Vector Machine, and Logistic Regression). Both Random Forest and Support Vector Machine models, using either time-domain or time- and frequency-domain features, yielded the best performance in detecting lifts, with respective accuracies of 79.2% (start) and 86.7% (end). Similarly, both ML models yielded the highest accuracy (80.9%) in classifying the two hand loads, regardless of the sEMG features used, emphasizing the potential of sEMG armbands for assessing exposure and risks in occupational lifting tasks.en
dc.description.versionAccepted versionen
dc.format.extent11 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 104285 (Article number)en
dc.identifier.doihttps://doi.org/10.1016/j.apergo.2024.104285en
dc.identifier.eissn1872-9126en
dc.identifier.issn0003-6870en
dc.identifier.orcidLim, Sol [0000-0001-5569-9312]en
dc.identifier.otherS0003-6870(24)00062-0 (PII)en
dc.identifier.pmid38797013en
dc.identifier.urihttps://hdl.handle.net/10919/126237en
dc.identifier.volume119en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/38797013en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectEMGen
dc.subjectLifting and loweringen
dc.subjectLifting load classificationen
dc.subjectWearable armbanden
dc.subject.meshHanden
dc.subject.meshHumansen
dc.subject.meshElectromyographyen
dc.subject.meshTask Performance and Analysisen
dc.subject.meshLiftingen
dc.subject.meshWeight-Bearingen
dc.subject.meshAdulten
dc.subject.meshFemaleen
dc.subject.meshMaleen
dc.subject.meshYoung Adulten
dc.subject.meshHealthy Volunteersen
dc.subject.meshMachine Learningen
dc.subject.meshSupport Vector Machineen
dc.subject.meshWearable Electronic Devicesen
dc.titleUse of a wearable electromyography armband to detect lift-lower tasks and classify hand loadsen
dc.title.serialApplied Ergonomicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2024-04-02en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Industrial and Systems Engineeringen
pubs.organisational-groupVirginia Tech/Faculty of Health Sciencesen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Submitted_EMG_Load_level_Classification_rev1.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: