Use of a wearable electromyography armband to detect lift-lower tasks and classify hand loads
dc.contributor.author | Taori, Sakshi | en |
dc.contributor.author | Lim, Sol | en |
dc.date.accessioned | 2025-04-28T13:05:21Z | en |
dc.date.available | 2025-04-28T13:05:21Z | en |
dc.date.issued | 2024-09 | en |
dc.description.abstract | We used an armband with embedded surface electromyography (sEMG) electrodes, together with machine-learning (ML) models, to automatically detect lifting-lowering activities and classify hand loads. Nine healthy participants (4 male and 5 female) completed simulated lifting-lowering tasks in various conditions and with two different hand loads (2.3 and 6.8 kg). We compared three sEMG signal feature sets (i.e., time, frequency, and a combination of both domains) and three ML classifiers (i.e., Random Forest, Support Vector Machine, and Logistic Regression). Both Random Forest and Support Vector Machine models, using either time-domain or time- and frequency-domain features, yielded the best performance in detecting lifts, with respective accuracies of 79.2% (start) and 86.7% (end). Similarly, both ML models yielded the highest accuracy (80.9%) in classifying the two hand loads, regardless of the sEMG features used, emphasizing the potential of sEMG armbands for assessing exposure and risks in occupational lifting tasks. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 11 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 104285 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1016/j.apergo.2024.104285 | en |
dc.identifier.eissn | 1872-9126 | en |
dc.identifier.issn | 0003-6870 | en |
dc.identifier.orcid | Lim, Sol [0000-0001-5569-9312] | en |
dc.identifier.other | S0003-6870(24)00062-0 (PII) | en |
dc.identifier.pmid | 38797013 | en |
dc.identifier.uri | https://hdl.handle.net/10919/126237 | en |
dc.identifier.volume | 119 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/38797013 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | EMG | en |
dc.subject | Lifting and lowering | en |
dc.subject | Lifting load classification | en |
dc.subject | Wearable armband | en |
dc.subject.mesh | Hand | en |
dc.subject.mesh | Humans | en |
dc.subject.mesh | Electromyography | en |
dc.subject.mesh | Task Performance and Analysis | en |
dc.subject.mesh | Lifting | en |
dc.subject.mesh | Weight-Bearing | en |
dc.subject.mesh | Adult | en |
dc.subject.mesh | Female | en |
dc.subject.mesh | Male | en |
dc.subject.mesh | Young Adult | en |
dc.subject.mesh | Healthy Volunteers | en |
dc.subject.mesh | Machine Learning | en |
dc.subject.mesh | Support Vector Machine | en |
dc.subject.mesh | Wearable Electronic Devices | en |
dc.title | Use of a wearable electromyography armband to detect lift-lower tasks and classify hand loads | en |
dc.title.serial | Applied Ergonomics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
dcterms.dateAccepted | 2024-04-02 | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |