Optimization and prediction of the electron-nuclear dipolar and scalar interaction in 1H and 13C liquid state dynamic nuclear polarization

dc.contributor.authorWang, Xiaoen
dc.contributor.authorIsley, William C., IIIen
dc.contributor.authorSalido, Sandra I.en
dc.contributor.authorSun, Z.en
dc.contributor.authorSong, Lien
dc.contributor.authorTsai, K. H.en
dc.contributor.authorCramer, Christopher J.en
dc.contributor.authorDorn, Harry C.en
dc.contributor.departmentChemistryen
dc.contributor.departmentUniversity of Minnesota. Department of Chemistryen
dc.contributor.departmentMinnesota Supercomputing Instituteen
dc.date.accessed2016-03-17en
dc.date.accessioned2016-03-18T22:24:55Zen
dc.date.available2016-03-18T22:24:55Zen
dc.date.issued2015-07-29en
dc.description.abstractDuring the last 10–15 years, dynamic nuclear polarization (DNP) has evolved as a powerful tool for hyperpolarization of NMR and MRI nuclides. However, it is not as well appreciated that solution-state dynamic nuclear polarization is a powerful approach to study intermolecular interactions in solution. For solutions and fluids, the 1H nuclide is usually dominated by an Overhauser dipolar enhancement and can be significantly increased by decreasing the correlation time (τc) of the substrate/nitroxide interaction by utilizing supercritical fluids (SF CO2). For molecules containing the ubiquitous 13C nuclide, the Overhauser enhancement is usually a profile of both scalar and dipolar interactions. For carbon atoms without an attached hydrogen, a dipolar enhancement usually dominates as we illustrate for sp2 hybridized carbons in the fullerenes, C60 and C70. However, the scalar interaction is dependent on a Fermi contact interaction which does not have the magnetic field dependence inherent in the dipolar interaction. For a comprehensive range of molecular systems we show that molecules that exhibit weakly acidic complexation interaction(s) with nitroxides provide corresponding large scalar enhancements. For the first time, we report that sp hybridized (H–C) alkyne systems, for example, the phenylacetylene–nitroxide system exhibit very large scalar dominated enhancements. Finally, we demonstrate for a wide range of molecular systems that the Fermi contact interaction can be computationally predicted via electron–nuclear hyperfine coupling and correlated with experimental 13C DNP enhancements.en
dc.description.notesContains supplementary information fileen
dc.description.notes2015 Royal Society of Chemistry Open Access Gold Articleen
dc.description.sponsorshipNational Science Foundation (U.S.)en
dc.description.sponsorshipWestvaco Companyen
dc.description.sponsorshipEastman Kodak Companyen
dc.description.sponsorshipPetroleum Research Foundationen
dc.description.sponsorshipUniversity of Minnesota. Doctoral Dissertation Fellowshipen
dc.format.extent14 p.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationWang, X., Isley III, W. C., Salido, S. I., Sun, Z., Song, L., Tsai, K. H., Cramer, C. J., & Dorn, H. C. (2015). Optimization and prediction of the electron-nuclear dipolar and scalar interaction in 1H and 13C liquid state dynamic nuclear polarization. Chemical Science, 6(11), 6482-6495. doi:10.1039/C5SC02499Den
dc.identifier.doihttps://doi.org/10.1039/C5SC02499Den
dc.identifier.issn2041-6520en
dc.identifier.issue11en
dc.identifier.other2015_Wang_Optimization_and_prediction.pdfen
dc.identifier.otherOptimization_prediction_supp_mat.pdfen
dc.identifier.otherCHE-1361595en
dc.identifier.urihttp://hdl.handle.net/10919/64964en
dc.identifier.volume6en
dc.language.isoen_USen
dc.publisherThe Royal Society of Chemistryen
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en
dc.titleOptimization and prediction of the electron-nuclear dipolar and scalar interaction in 1H and 13C liquid state dynamic nuclear polarizationen
dc.title.serialChemical Scienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2015_Wang_Optimization_and_prediction.pdf
Size:
940.82 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Optimization_prediction_supp_mat.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description: