Acoustic Inversion for Uncertainty Reduction in Reynolds-Averaged Navier-Stokes-Based Jet Noise Prediction
dc.contributor.author | Zhang, Xin-Lei | en |
dc.contributor.author | Xiao, Heng | en |
dc.contributor.author | Wu, Ting | en |
dc.contributor.author | He, Guowei | en |
dc.date.accessioned | 2022-02-15T14:12:49Z | en |
dc.date.available | 2022-02-15T14:12:49Z | en |
dc.date.issued | 2021-12-13 | en |
dc.date.updated | 2022-02-15T14:12:45Z | en |
dc.description.abstract | The Reynolds-averaged Navier–Stokes (RANS)-based method is a practical tool to provide rapid assessment of jet noise-reduction concepts. However, the RANS-based method requires modeling assumptions to represent noise generation and propagation, which often reduces the predictive accuracy due to the model-form uncertainties. In this work, the ensemble Kalman filter-based acoustic inversion method is introduced to reduce uncertainties in the turbulent kinetic energy and dissipation rate based on the far-field noise and the axial centerline velocity data. The results show that jet noise data are more effective from which to infer turbulent kinetic energy and dissipation rate compared to velocity data. Moreover, the inferred noise source is able to improve the estimation of the turbulent flowfield and the far-field noise at unobserved locations. Further, the noise model parameters are also considered uncertain quantities, demonstrating the ability of the proposed framework to reduce uncertainties in both the RANS and noise models. Finally, one realistic case with experimental data is investigated to show the practicality of the proposed framework. The method opens up the possibility for the inverse modeling of jet noise sources by incorporating far-field noise data that are relatively straightforward to be measured compared to the velocity field. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 16 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.2514/1.J060876 | en |
dc.identifier.eissn | 1533-385X | en |
dc.identifier.issn | 0001-1452 | en |
dc.identifier.orcid | Xiao, Heng [0000-0002-3323-4028] | en |
dc.identifier.uri | http://hdl.handle.net/10919/108364 | en |
dc.language.iso | en | en |
dc.publisher | American Institute of Aeronautics and Astronautics | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000742546900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Engineering, Aerospace | en |
dc.subject | Engineering | en |
dc.subject | DATA ASSIMILATION | en |
dc.subject | MIXING NOISE | en |
dc.subject | MEAN-FLOW | en |
dc.subject | OPTIMIZATION | en |
dc.subject | ANALOGY | en |
dc.subject | SPACE | en |
dc.subject | MODEL | en |
dc.subject | SPEED | en |
dc.subject | Aerospace & Aeronautics | en |
dc.subject | 0901 Aerospace Engineering | en |
dc.subject | 0905 Civil Engineering | en |
dc.subject | 0913 Mechanical Engineering | en |
dc.title | Acoustic Inversion for Uncertainty Reduction in Reynolds-Averaged Navier-Stokes-Based Jet Noise Prediction | en |
dc.title.serial | AIAA Journal | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Early Access | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Aerospace and Ocean Engineering | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences/Durelle Scott | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Zhang et al. - 2021 - Acoustic Inversion for Uncertainty Reduction in Re.pdf
- Size:
- 9.19 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version