Fibrations in CICY threefolds
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this work we systematically enumerate genus one fibrations in the class of 7; 890 Calabi-Yau manifolds defined as complete intersections in products of projective spaces, the so-called CICY threefolds. This survey is independent of the description of the manifolds and improves upon past approaches that probed only a particular algebraic form of the threefolds (i.e. searches for "obvious" genus one fibrations as in [1, 2]). We also study K3-fibrations and nested fibration structures. That is, K3 fibrations with potentially many distinct elliptic fibrations. To accomplish this survey a number of new geometric tools are developed including a determination of the full topology of all CICY threefolds, including triple intersection numbers. In 2; 946 cases this involves finding a new "favorable" description of the manifold in which all divisors descend from a simple ambient space. Our results consist of a survey of obvious fibrations for all CICY threefolds and a complete classification of all genus one fibrations for 4; 957 "Kahler favorable" CICYs whose Kahler cones descend from a simple ambient space. Within the CICY dataset, we find 139; 597 obvious genus one fibrations, 30; 974 obvious K3 fibrations and 208; 987 nested combinations. For the Kahler favorable geometries we find a complete classification of 377; 559 genus one fibrations. For one manifold with Hodge numbers (19; 19) we find an explicit description of an in finite number of distinct genus-one fibrations extending previous results for this particular geometry that have appeared in the literature. The data associated to this scan is available here [3].