Effects of the antibiotic tetracycline on the honey bee gut microbiome

TR Number

Date

2024-05-08

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Host-associated microbial communities, also known as microbiomes, are essential to the health of their hosts, and disturbance of these communities can negatively impact host fitness. The honey bee gut microbiome is a relatively simple host-associated community that makes an excellent model system for studying microbiome stability. In addition, honey bees are essential agricultural pollinators, so factors that impact their health are important for food security. The presented research focused on the stability of the honey bee gut microbiome in response to disturbance from the antibiotic tetracycline. Tetracycline was chosen because it is the most commonly used antibiotic in beekeeping, and may have negative effects on bees through the disruption of their gut microbiomes. The first study presents a new fecal sampling method for studying the honey bee gut microbiome of individual bees over time. This method accurately represented bacterial community structure in the gut microbiome as determined with 16S rRNA gene amplicon sequencing, as fecal and whole gut samples did not differ significantly for individual bees. The fecal sampling technique was then used to examine changes to individual honey bee gut bacterial communities before and after tetracycline exposure. Minimal differences in gut community structure were detected prior to and five days after tetracycline treatment. However, there was variability in how individual gut microbiomes were affected by tetracycline treatment, highlighting the importance of intraspecific variation in response to disturbance. The second study investigated whether the timing of disturbance during a host's life impacts microbiome community stability. Newly emerged bees were treated with tetracycline, returned to their hive, and recollected 7 or 14 days later. The gut communities of the bees were then characterized using 16S rRNA gene amplicon sequencing. Gut microbiome structure of bees treated with tetracycline at emergence differed from controls both 7 and 14 days after emergence, with the antibiotic-treated bees having lower community richness overall. This study showed that early life disturbance of host-associated microbial communities can influence microbiome structure later in life. The final study describes the occurrence of antibiotic resistance genes (ARGs) in honey bee gut bacterial symbionts from hives across the US. Honey bee gut metagenomes were sampled from hives at 13 apiaries located in a transect from Virginia to Washington, and ARG presence was assessed across the sites. We also specifically quantified the abundances of two common tetracycline resistance genes (tet(B) and tet(M)) across apiaries. ARGs, both for antibiotics used in beekeeping and unrelated antibiotics, were detected in honey bee gut bacteria from all apiaries. Tetracycline resistance genes were the most common across all apiaries, and the abundance of two tetracycline resistance genes varied by apiary. Members of the honey bee gut microbiome contained different proportions of ARGs, but taxa within a single family contained similar proportions, possibly indicating phylogeny plays a role in ARG accumulation. In particular, Gilliamella and Frischella, both in the family Orbaceae, contained the highest percentages of ARGs. The results from this study suggest honey bee bacteria act as reservoirs of ARGs. Overall, the presented research contributes to the field of biology by highlighting the importance of intraspecific variation in host-associated microbial communities and presenting a new method for studying honey bee gut microbiome variation at the individual-level, showing that early life events in honey bees influence microbiome development, and suggesting that honey bee bacterial symbionts have adapted to deal with antibiotic disturbance through the accumulation of ARGs.

Description

Keywords

honey bee, Apis mellifera, tetracycline, microbial ecology, community ecology, disturbance, microbiome, antibiotic resistance

Citation