Cyclopentadiene as a Platform for Polymer Synthesis and Modification of Macromolecular Systems

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Octafluorobiphenylene-linked bis(cyclopentadienone) was prepared bearing one perfluoro-4-tolyl and one tert-butyl substituent on the terminal diene rings. Polymerizations with 1,4- and 1,3-diethynylbenzene afforded linear Diels-Alder polyphenylenes (DAPPs) having lateral tert-butyl and perfluoro-4-tolyl substituents. The perfluoro-4-tolyl-substituted DAPPs are thermally stable, glassy solids (Tg ~ 230 deg C) that could not be cast into stable films (Mn ~ 10kDa, DPn ~ 10). New compounds perfluoro(1-phenyl-1-octanone) and perfluoro(1,1-diphenyl-1-octanol) were prepared from pentafluorophenylmagnesium bromide and perfluorooctanoyl chloride by nucleophilic acyl substitution and addition reactions.

Diels-Alder reactions of 1,2-bis(nonafluorobiphenyl-4-yl)-4-tert-butylcyclopentadiene (CPD-1) with N-(4-fluorophenyl)maleimide (FMI) were explored as models for cyclopentadiene-maleimide-based Diels-Alder polymerizations. Mixtures of five endo/exo adducts were obtained, dependent upon CPD-1 tautomers present at reaction temperatures. The thermodynamic adduct (B3LYP/6-31G* geometry optimizations) was found to be the exo DA adduct of FMI and 2,3-bis(nonafluorobiphenyl-4-yl)-5-tert-butylcyclopentadiene. Five of the six possible isomers were observed and characterized including two by single-crystal X-ray diffraction. Parallel reactions of FMI and 1,2-bis(pentafluorophenyl)-4-tert-butylcyclopentadiene yielded three crystallographically characterized isomers, and with 1H NMR and 19F NMR spectrometry, including 1-D NOE, allowed five isomeric products to be identified.

Diene CPD-1 is reactive toward nucleophiles (such as potassium 4-methylphenoxide) at the 4-positions of the C12F9 groups. Using this reactivity pattern, CPD-1 was polymerized with bis(phenol) A (BPA) and bis(phenol-A-6F) (BPAF) to form linear poly(arylene ethers) (Mn ~35 kDa) containing backbone cyclopentadienes. These polymers are glassy solids (Tg ~ 220 deg C) with good thermal stability (Td ~ 290 deg C), and they form stable, creaseable films cast from chloroform solutions. Treatment with 1.5-5.0% of 1,6-bis(N-maleimido)dodecane in N,N-dimethylacetamide (DMAc) at 165 deg C gave insoluble, solvent-swellable networks confirmed using ATR-FTIR. CPD-1 was also used as a cyclopentadiene-based linking group for chain extension of phenol-terminated methyl-PEEK oligomers (PEEKMOHs) with Mn values of 2, 5, and 10 kDa. These polymers are glassy solids (Tg ~ 156 deg C) with good thermal stability (Td ~ 400 deg C), that form stable, creaseable films from chloroform. Segmented polymers were treated with FMI in NMP, and showed functionalization density of approximately 50% by 19F NMR. Segmented polymers were also cross-linked by reaction of 1,6-bis(N-maleimido)hexane (cyclopentadiene to maleimide functional group ratio of 1:1) in NMP at 140 deg C.

Diels-Alder, cyclopentadiene, maleimide, PEEKMOH, telechelic, step-growth polymerization, polymer functionalization