Molecular thin films and their role in controlling interface properties

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

In the first part of this study, frictional and normal forces in aqueous solutions were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of different amino acids were each "grafted from" an oxidized silicon wafer using microwave-assisted solid phase peptide synthesis. Oligopeptides increased the magnitude of friction compared to a bare hydrophilic silicon wafer. Friction was a strong function of the nature of the monomer unit and was lower for hydrophilic films. There was a strong adhesion and therefore friction between surfaces of opposite charges. Changes in adhesion and friction depended on the hydrophobicity and electrostatic forces: hydrophobic films and oppositely charged films produced high friction, whereas hydrophilic and like-charges produced low friction. Friction was lower in phosphate buffered saline than in pure water due to the screening of the double layer attraction for oppositely charged surfaces and additional lubrication by hydrated salt ions. We also investigated antimicrobial action of poly (allyl amine) (PA) when covalently bonded to glass. Glass surfaces were prepared by a two-step procedure where the glass was first functionalized with epoxide groups using 3-glycidoxypropyltrimethoxy silane (GOPTS) and then exposed to PA to bind via reaction of a fraction of its amine groups. Antibacterial properties of these coatings were evaluated by spraying aqueous suspensions of bacteria on the functionalized glass slides, incubating them under agar, and counting the number of surviving cell colonies. The PA film displayed strong anti-microbial activity against both Gram-positive and Gram-negative bacteria. Films that were prepared by allowing the PA to self assemble onto the solid via electrostatic interactions were ineffective antimicrobials. Such films had an insufficient positive charge and did not extend far from the solid. Thus we found that antimicrobial activity was correlated with a combination of the ability of the polymer chain to extend into solution and a positive surface potential.

antimicrobial surfaces, poly(allylamine), lateral force microscopy, atomic force microscopy, peptide synthesis