Learning Data Heterogeneity with Dirichlet Diffusion Trees

dc.contributor.authorHuo, Shuningen
dc.contributor.authorZhu, Hongxiaoen
dc.date.accessioned2025-08-27T16:47:34Zen
dc.date.available2025-08-27T16:47:34Zen
dc.date.issued2025-08-11en
dc.date.updated2025-08-27T13:59:09Zen
dc.description.abstractCharacterizing complex heterogeneous structures in high-dimensional data remains a significant challenge. Traditional approaches often rely on summary statistics such as histograms, skewness, or kurtosis, which—despite their simplicity—are insufficient for capturing nuanced patterns of heterogeneity. Motivated by a brain tumor study, we consider data in the form of point clouds, where each observation consists of a variable number of points. Our goal is to detect differences in the heterogeneity structures across distinct groups of observations. To this end, we employ the Dirichlet Diffusion Tree (DDT) to characterize the latent heterogeneity structure of each observation. We further extend the DDT framework by introducing a regression component that links covariates to the hyperparameters of the latent trees. We develop a Markov chain Monte Carlo algorithm for posterior inference, which alternatively updates the latent tree structures and the regression coefficients. The effectiveness of our proposed method is evaluated by a simulation study and a real-world application in brain tumor imaging.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationHuo, S.; Zhu, H. Learning Data Heterogeneity with Dirichlet Diffusion Trees. Mathematics 2025, 13, 2568.en
dc.identifier.doihttps://doi.org/10.3390/math13162568en
dc.identifier.urihttps://hdl.handle.net/10919/137590en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectDirichlet diffusion treeen
dc.subjectdata heterogeneityen
dc.subjectlatent tree modelsen
dc.titleLearning Data Heterogeneity with Dirichlet Diffusion Treesen
dc.title.serialMathematicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-13-02568.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: