Encoding the Sensor Allocation Problem for Reinforcement Learning

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Traditionally, space situational awareness (SSA) sensor networks have relied on dynamic programming theory to generate tasking plans which govern how sensors are allocated to observe resident space objects. Deep reinforcement learning (DRL) techniques, with their ability to be trained on simulated environments, which are readily available for the SSA sensor allocation problem, and demonstrated performance in other fields, have potential to exceed performance of deterministic methods. The research presented in this dissertation develops techniques for encoding an SSA environment model to apply DRL to the sensor allocation problem. This dissertation is the compilation of two separate but related studies. The first study compares two alternative invalid action handling techniques, penalization and masking. The second study examines the performance of policies that have forecast state knowledge incorporated in the observation space.



space traffic management, resource allocation, reinforcement learning