Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit

Files

TR Number

Date

2008-05-29

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press – Elsevier

Abstract

Human C8 is one of five complement components (C5b, C6, C7, C8 and C9) that assemble on bacterial membranes to form a pore-like structure referred to as the "membrane attack complex" (MAC). C8 contains three genetically distinct subunits (C8α, C8β, Cγ.) arranged as a disulfide-linked C8α-γ dimer that is noncovalently associated with C8β. C6, C7 C8α, C8β and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8γ subunit is unrelated and belongs to the lipocalin family of proteins that display a β-barrel fold and generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8α MACPF domain were recently reported and both display a fold similar to the bacterial pore-forming cholesterol-dependent cytolysins (CDC). In the present study, we determined the crystal structure of the human C8α MACPF domain disulfide-linked to C8γ (αMACPF-γ) at 2.15 Å resolution. The αMACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8γ. One is in a previously characterized 19-residue insertion (indel) in C8α and fills the entrance to the putative C8γ ligand binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8γ β-barrel. The latter interaction induces conformational changes in αMACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X6-G-G in αMACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.

Description

Keywords

Biochemistry & Molecular Biology, complement, MACPF, C8, cytolysins, membrane attack complex, MEMBRANE ATTACK COMPLEX, CHOLESTEROL-DEPENDENT CYTOLYSIN, LIGAND-BINDING SITE, PORE-FORMING TOXINS, MOLECULAR GRAPHICS, PERFRINGOLYSIN O, 8TH COMPONENT, CELL-DEATH, MODEL

Citation