Exponentially Accurate Error Estimates of Quasiclassical Eigenvalues

dc.contributor.authorToloza, Julio Hugoen
dc.contributor.committeechairHagedorn, George A.en
dc.contributor.committeecochairChang, Lay Namen
dc.contributor.committeememberKohler, Werner E.en
dc.contributor.committeememberSchmittmann, Beateen
dc.contributor.committeememberKlaus, Martinen
dc.contributor.departmentPhysicsen
dc.date.accessioned2014-03-14T20:20:14Zen
dc.date.adate2002-12-16en
dc.date.available2014-03-14T20:20:14Zen
dc.date.issued2002-12-11en
dc.date.rdate2003-12-16en
dc.date.sdate2002-12-13en
dc.description.abstractWe study the behavior of truncated Rayleigh-Schröodinger series for the low-lying eigenvalues of the time-independent Schröodinger equation, when the Planck's constant is considered in the semiclassical limit. Under certain hypotheses on the potential energy, we prove that, for any given small value of the Planck's constant, there is an optimal truncation of the series for the approximate eigenvalues, such that the difference between an approximate and actual eigenvalue is smaller than an exponentially small function of the Planck's constant. We also prove the analogous results concerning the eigenfunctions.en
dc.description.degreePh. D.en
dc.identifier.otheretd-12132002-163620en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-12132002-163620/en
dc.identifier.urihttp://hdl.handle.net/10919/30072en
dc.publisherVirginia Techen
dc.relation.haspartthesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectexponentially accurate asymptoticsen
dc.titleExponentially Accurate Error Estimates of Quasiclassical Eigenvaluesen
dc.typeDissertationen
thesis.degree.disciplinePhysicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
390.07 KB
Format:
Adobe Portable Document Format