Development, Characterization, and Fundamental Studies on Molecular Ionic Composites and PBDT Hydrogels

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


This dissertation aims to develop, characterize, and fundamentally understand a new class of materials termed "molecular ionic composites" (MICs). MICs show promise as next-generation solid electrolytes for batteries. MICs form when mixing a rigid polyanion with purely ionic fluids, and they behave mechanically as a solid but contain a high density of ions that move nearly as in a neat liquid. Specifically, prototypical MICs are based on solutions of the rigid-rod polyelectrolyte poly(2,2'-disulfonyl-4,4'-benzideneterephthalamide) (PBDT), which forms a double helix, combined with imidazolium-based ionic liquids (ILs). The IL comprises 75-97 wt% of the final solid, even though the Young's modulus can reach ~ 2 GPa at 80 wt% IL. We propose that these properties are driven by a biphasic internal structure in MICs corresponding to IL-rich "puddles" (an interconnected liquid phase) and PBDT-IL associated "bundles" where IL ions form the collective electrostatic associations that cause the MICs to be a solid. Through this dissertation I will discuss a wide variety of MICs that have been created through the use of two different formation processes, the "ingot" method and the "solvent casting" method, which allow for the use of many different ionic fluid sources to further tune MIC properties. The following chapters build to the fundamental knowledge and our current understanding of the wide variety of materials that can be created from PBDT and IL.



Polymer Electrolytes, Ion Gels, Rigid-rod Polyelectrolytes, NMR, Self-diffusion, Variable Temperature Ion Transport, Hydrogel, Self-assembly