Machine Learning for Improvement of Ocean Data Resolution for Weather Forecasting and Climatological Research
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Severe weather events like hurricanes and tornadoes pose major risks globally, underscoring the critical need for accurate forecasts to mitigate impacts. While advanced computational capabilities and climate models have improved predictions, lack of high-resolution initial conditions still limits forecast accuracy. The Atlantic's "Hurricane Alley" region sees most storms arise, thus needing robust in-situ ocean data plus atmospheric profiles to enable precise hurricane tracking and intensity forecasts. Examining satellite datasets reveals radio occultation (RO) provides the most accurate 5-25 km altitude atmospheric measurements. However, below 5 km accuracy remains insufficient over oceans versus land areas. Some recent benchmark study e.g. Patil Iiyama (2022), and Wei Guan (2022) in their work proposed the use of deep learning models for sea surface temperature (SST) prediction in the Tohoku region with very low errors ranging from 0.35°C to 0.75°C and the root-mean-square error increases from 0.27°C to 0.53°C over the over the China seas respectively. The approach we have developed remains unparalleled in its domain as of this date. This research is divided into two parts and aims to develop a data driven satellite-informed machine learning system to combine high-quality but sparse in-situ ocean data with more readily available low-quality satellite data. In the first part of the work, a novel data-driven satellite-informed machine learning algorithm was implemented that combines High-Quality/Low-Coverage in-situ point ocean data (e.g. ARGO Floats) and Low-Quality/High-Coverage Satellite ocean Data (e.g. HYCOM, MODIS-Aqua, G-COM) and generated high resolution data with a RMSE of 0.58◦C over the Atlantic Ocean.The second part of the work a novel GNN algorithm was implemented on the Gulf of Mexico and showed it can successfully capture the complex interactions between the ocean and mimic the path of a ARGO floats with a RMSE of 1.40◦C.