Advanced spatial information processes: modeling and application
dc.contributor.author | Zhang, Mingchuan | en |
dc.contributor.committeechair | Haralick, Robert M. | en |
dc.contributor.committeemember | Ehrich, Roger W. | en |
dc.contributor.committeemember | Campbell, James B. Jr. | en |
dc.contributor.committeemember | Yu, K.B. | en |
dc.contributor.committeemember | Roach, John W. | en |
dc.contributor.department | Electrical Engineering | en |
dc.date.accessioned | 2017-03-10T15:15:10Z | en |
dc.date.available | 2017-03-10T15:15:10Z | en |
dc.date.issued | 1985 | en |
dc.description.abstract | Making full use of spatial information is an important problem in information-processing and decision making. In this dissertation, two Bayesian decision theoretic frameworks for context classification are developed which make full use of spatial information. The first framework is a new multispectral image context classification technique which is based on a recursive algorithm for optimal estimation of the state of a two-dimensional discrete Markov Random Field (MRF). The implementation of the recursive algorithm is a form of dynamic programming. The second framework is based on a stochastic relaxation algorithm and Markov-Gibbs Random Fields. The relaxation algorithm constitutes an optimization using annealing. We also discuss how to estimate the Markov Random Field Model parameters, which is a key problem in using MRF in image processing and pattern recognition. The estimation of transition probabilities in a 2-D MRF is converted into two 1-D estimation problems. Then a Space-varying estimation method for transition probabilities is discussed. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | v, 221 leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/76087 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 16988467 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1985.Z525 | en |
dc.subject.lcsh | Spatial systems | en |
dc.subject.lcsh | Random fields | en |
dc.subject.lcsh | Stochastic processes | en |
dc.title | Advanced spatial information processes: modeling and application | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Electrical Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1985.Z525.pdf
- Size:
- 11.56 MB
- Format:
- Adobe Portable Document Format
- Description: