Investigating the dislocation reactions on sigma 3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel

dc.contributor.authorHung, Chang-Yuen
dc.contributor.authorShimokawa, Tomotsuguen
dc.contributor.authorBai, Yuen
dc.contributor.authorTsuji, Nobuhiroen
dc.contributor.authorMurayama, Mitsuhiroen
dc.date.accessioned2022-02-10T12:09:13Zen
dc.date.available2022-02-10T12:09:13Zen
dc.date.issued2021-09-29en
dc.date.updated2022-02-10T12:09:08Zen
dc.description.abstractSome of ultrafine-grained (UFG) metals including UFG twinning induced plasticity (TWIP) steels have been found to overcome the paradox of strength and ductility in metals benefiting from their unique deformation modes. Here, this study provides insights into the atomistic process of deformation twin nucleation at Σ3{111} twin boundaries, the dominant type of grain boundary in this UFG high manganese TWIP steel. In response to the applied tensile stresses, grain boundary sliding takes place which changes the structure of coherent Σ3{111} twin boundary from atomistically smooth to partly defective. High resolution transmission electron microscopy demonstrates that the formation of disconnection on Σ3{111} twin boundaries is associated with the motion of Shockley partial dislocations on the boundaries. The twin boundary disconnections act as preferential nucleation sites for deformation twin that is a characteristic difference from the coarse-grained counterpart, and is likely correlated with the lethargy of grain interior dislocation activities, frequently seen in UFG metals. The deformation twin nucleation behavior will be discussed based on in-situ TEM deformation experiments and nanoscale strain distribution analyses results.en
dc.description.versionPublished versionen
dc.format.extent13 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 19298 (Article number)en
dc.identifier.doihttps://doi.org/10.1038/s41598-021-98875-zen
dc.identifier.eissn2045-2322en
dc.identifier.issn2045-2322en
dc.identifier.issue1en
dc.identifier.orcidMurayama, Mitsuhiro [0000-0003-1965-4891]en
dc.identifier.other10.1038/s41598-021-98875-z (PII)en
dc.identifier.pmid34588568en
dc.identifier.urihttp://hdl.handle.net/10919/108248en
dc.identifier.volume11en
dc.language.isoenen
dc.publisherNature Portfolioen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000702152400069&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectSEVERE PLASTIC-DEFORMATIONen
dc.subjectORIENTATION DEPENDENCEen
dc.subjectBICRYSTAL INTERFACESen
dc.subjectDUCTILITYen
dc.subjectSTRENGTHen
dc.subjectMICROSTRUCTUREen
dc.subjectMECHANISMSen
dc.subjectARBen
dc.subjectMIGRATIONen
dc.subjectBEHAVIORen
dc.titleInvestigating the dislocation reactions on sigma 3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steelen
dc.title.serialScientific Reportsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2021-09-16en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Materials Science and Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hung_et_al-2021-Scientific_Reports.pdf
Size:
4.78 MB
Format:
Adobe Portable Document Format
Description:
Published version