Robust Predictive Control for Legged Locomotion

TR Number

Date

2024-01-11

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This dissertation aims to realize the goal of developing robust control solutions that can enable legged robots to navigate complex unknown environments. The idea of creating articulated-legged machines that can mimic animal locomotion has fueled the imagination of many researchers. These legged robots are designed to assist humans in their day-to-day tasks and challenging scenarios such as monitoring remote, inhospitable environments, disaster response, and other dangerous environments. Despite several decades of research, legged robots have yet to reach the dexterity or dynamic stability needed for real-world deployments. A fundamental gap exists in the understanding and development of reliable and scalable algorithms required for the real-time planning and control of legged robots. The overarching goal of this thesis is to formally develop computationally tractable, robust controllers based on nonlinear hybrid systems theory, model predictive control, and optimization for the real-time planning and control of agile locomotion in quadrupedal robots.

Toward this objective, this thesis first investigates layered control architectures. In particular, we propose a two-level hierarchical control architecture in which the higher level is based on a reduced-order model predictive control (MPC), and the lower level is based on a full-order quadratic programming (QP) based virtual constraints controller. Specifically, two MPC architectures are explored: 1) An event-based MPC scheme that generates the optimal center of mass (COM) trajectories using a reduced-order linear inverted pendulum (LIP) model, and 2) A time-based MPC scheme that computes the optimal COM and ground reaction forces (GRF) using the reduced-order single rigid body (SRB) dynamics model. The optimal COM trajectories in the event-based MPC and the optimal COM trajectories, along with the ground reaction forces in the time-based MPC, are then tracked by the low-level virtual constraints controller. The event-based MPC scheme is numerically validated on the Vision 60 platform in a physics-based simulation environment. It has significantly reduced the computational burden associated with real-time planning-based MPC schemes. However, owing to the quasi-static nature of the optimal trajectories generated by the LIP model, we explored a time-based MPC scheme using Single Rigid Body Dynamics. This time-based MPC scheme is also numerically validated using the mathematical model of the A1 quadrupedal robot.

Most MPC schemes use a reduced-order model to generate optimal trajectories. However, the abstraction and unmodeled dynamics in template models significantly increase the gap between reduced- and full-order models, limiting the robot's full scope and potential. In the second part of the thesis, we aim to develop a computationally tractable robust model predictive control (RMPC) scheme based on convex QPs to bridge this gap. The RMPC framework considers the single rigid body model subject to a set of unmodeled dynamics and plans for the optimal reduced-order trajectory and GRFs. The generated optimal GRFs of the high-level RMPC are then mapped to the full-order model using a low-level nonlinear controller based on virtual constraints and QP. The key innovation of the proposed RMPC framework is that it allows the integration of the hierarchical controller with Reinforcement Learning (RL) techniques to train a neural network to compute the vertices of the uncertainty set numerically. The proposed hierarchical control algorithm is validated numerically and experimentally for robust and blind locomotion of the A1 quadrupedal robot on different indoor and outdoor terrains and at different speeds. The numerical analysis of the RMPC suggests significant improvement in the performance of the rough terrain locomotion compared to the nominal MPC. In particular, the proposed RMPC algorithm outperforms the nominal MPC by over 60% during rough terrain locomotion over 550 uneven terrains. Our experimental studies also indicate a significant reduction in the gap between the reduced full-order models by comparing the desired and actual GRFs.

Finally, the last part of the thesis presents a formal approach for synthesizing robust mathcalH2- and mathcalHinfty-optimal MPCs to stabilize the periodic locomotion of legged robots. The proposed algorithm builds on the existing optimization-based control stack. We outline the set of conditions under which the closed-loop nonlinear dynamics around a periodic orbit can be transformed into a linear time-invariant (LTI) system using Floquet theory. We then outline an approach to systematically generate parameterized mathcalH2- and mathcalHinfty- robust controllers using linear matrix inequalities (LMIs). We subsequently established a set of conditions guaranteeing the existence of such robust optimal controllers. The proposed mathcalH2- and mathcalHinfty-optimal MPCs are extensively validated both numerically and experimentally for the robust locomotion of the A1 quadrupedal robot subject to various external disturbances and uneven terrains. Our numerical analysis suggests a significant improvement in the performance of robust locomotion compared to the nominal MPC.

Description

Keywords

Legged Locomotion, Robust Predictive Control, Model Predictive Control, Hybrid Zero Dynamics

Citation