A Hybrid Monte-Carlo sampling smoother for four-dimensional data assimilation
dc.contributor.author | Attia, A. | en |
dc.contributor.author | Rao, V. | en |
dc.contributor.author | Sandu, Adrian | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2017-03-06T18:34:31Z | en |
dc.date.available | 2017-03-06T18:34:31Z | en |
dc.date.issued | 2017-01-10 | en |
dc.description.abstract | This paper constructs an ensemble-based sampling smoother for four-dimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommodates non-Gaussian errors and non-linear model dynamics and observation operators. Unlike the four-dimensional variational method, which only finds a mode of the posterior distribution, the smoother provides an estimate of the posterior uncertainty. One can use the ensemble mean as the minimum variance estimate of the state, or can use the ensemble in conjunction with the variational approach to estimate the background errors for subsequent assimilation windows. Numerical results demonstrate the advantages of the proposed method compared to the traditional variational and ensemble-based smoothing methods. | en |
dc.description.version | Published version | en |
dc.format.extent | 90 - 112 (23) page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1002/fld.4259 | en |
dc.identifier.issn | 0271-2091 | en |
dc.identifier.issue | 1 | en |
dc.identifier.uri | http://hdl.handle.net/10919/75267 | en |
dc.identifier.volume | 83 | en |
dc.language.iso | en | en |
dc.publisher | Wiley-Blackwell | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000389330000005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Technology | en |
dc.subject | Computer Science, Interdisciplinary Applications | en |
dc.subject | Mathematics, Interdisciplinary Applications | en |
dc.subject | Mechanics | en |
dc.subject | Physics, Fluids & Plasmas | en |
dc.subject | Computer Science | en |
dc.subject | Mathematics | en |
dc.subject | Physics | en |
dc.subject | data assimilation | en |
dc.subject | variational methods | en |
dc.subject | ensemble smoothers | en |
dc.subject | Markov chain | en |
dc.subject | Hybrid Monte Carlo | en |
dc.subject | QUASI-GEOSTROPHIC MODEL | en |
dc.subject | ENSEMBLE KALMAN FILTER | en |
dc.subject | 4D-VAR | en |
dc.subject | EQUATIONS | en |
dc.subject | DYNAMICS | en |
dc.title | A Hybrid Monte-Carlo sampling smoother for four-dimensional data assimilation | en |
dc.title.serial | International Journal For Numerical Methods in Fluids | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/Computer Science | en |