A Hybrid Monte-Carlo sampling smoother for four-dimensional data assimilation

dc.contributor.authorAttia, A.en
dc.contributor.authorRao, V.en
dc.contributor.authorSandu, Adrianen
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-06T18:34:31Zen
dc.date.available2017-03-06T18:34:31Zen
dc.date.issued2017-01-10en
dc.description.abstractThis paper constructs an ensemble-based sampling smoother for four-dimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommodates non-Gaussian errors and non-linear model dynamics and observation operators. Unlike the four-dimensional variational method, which only finds a mode of the posterior distribution, the smoother provides an estimate of the posterior uncertainty. One can use the ensemble mean as the minimum variance estimate of the state, or can use the ensemble in conjunction with the variational approach to estimate the background errors for subsequent assimilation windows. Numerical results demonstrate the advantages of the proposed method compared to the traditional variational and ensemble-based smoothing methods.en
dc.description.versionPublished versionen
dc.format.extent90 - 112 (23) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1002/fld.4259en
dc.identifier.issn0271-2091en
dc.identifier.issue1en
dc.identifier.urihttp://hdl.handle.net/10919/75267en
dc.identifier.volume83en
dc.language.isoenen
dc.publisherWiley-Blackwellen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000389330000005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTechnologyen
dc.subjectComputer Science, Interdisciplinary Applicationsen
dc.subjectMathematics, Interdisciplinary Applicationsen
dc.subjectMechanicsen
dc.subjectPhysics, Fluids & Plasmasen
dc.subjectComputer Scienceen
dc.subjectMathematicsen
dc.subjectPhysicsen
dc.subjectdata assimilationen
dc.subjectvariational methodsen
dc.subjectensemble smoothersen
dc.subjectMarkov chainen
dc.subjectHybrid Monte Carloen
dc.subjectQUASI-GEOSTROPHIC MODELen
dc.subjectENSEMBLE KALMAN FILTERen
dc.subject4D-VARen
dc.subjectEQUATIONSen
dc.subjectDYNAMICSen
dc.titleA Hybrid Monte-Carlo sampling smoother for four-dimensional data assimilationen
dc.title.serialInternational Journal For Numerical Methods in Fluidsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1505.04724v1.pdf
Size:
7.56 MB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: