CyNetSVM: A Cytoscape App for Cancer Biomarker Identification Using Network Constrained Support Vector Machines

dc.contributorVirginia Techen
dc.contributor.authorShi, Xuen
dc.contributor.authorBanerjee, Sharmien
dc.contributor.authorChen, Lien
dc.contributor.authorHilakivi-Clarke, Leenaen
dc.contributor.authorClarke, Roberten
dc.contributor.authorXuan, Jianhuaen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2017-03-28T18:12:25Zen
dc.date.available2017-03-28T18:12:25Zen
dc.date.issued2017-01-25en
dc.description.abstractOne of the important tasks in cancer research is to identify biomarkers and build classification models for clinical outcome prediction. In this paper, we develop a CyNetSVM software package, implemented in Java and integrated with Cytoscape as an app, to identify network biomarkers using network-constrained support vector machines (NetSVM). The Cytoscape app of NetSVM is specifically designed to improve the usability of NetSVM with the following enhancements: (1) user-friendly graphical user interface (GUI), (2) computationally efficient core program and (3) convenient network visualization capability. The CyNetSVM app has been used to analyze breast cancer data to identify network genes associated with breast cancer recurrence. The biological function of these network genes is enriched in signaling pathways associated with breast cancer progression, showing the effectiveness of CyNetSVM for cancer biomarker identification. The CyNetSVM package is available at Cytoscape App Store and http://sourceforge.net/projects/netsvmjava; a sample data set is also provided at sourceforge. Net.en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0170482en
dc.identifier.issue1en
dc.identifier.urihttp://hdl.handle.net/10919/76716en
dc.identifier.volume12en
dc.language.isoenen
dc.publisherPLOSen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleCyNetSVM: A Cytoscape App for Cancer Biomarker Identification Using Network Constrained Support Vector Machinesen
dc.title.serialPLOS Oneen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
XuanCyNetSVM2017.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
Description: