The Fermat equation over quadratic fields

dc.contributor.authorHao, Hsin-Seng Freden
dc.contributor.committeechairParry, Charles J.en
dc.contributor.committeememberAull, Charles E.en
dc.contributor.committeememberBrown, E.A.en
dc.contributor.committeememberGreen, E.L.en
dc.contributor.committeememberPrather, Carlen
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-12-06T15:20:50Zen
dc.date.available2017-12-06T15:20:50Zen
dc.date.issued1982en
dc.description.abstractIn this thesis we attempt to generalize some of Kummer's work on Fermat's Last Theorem over the rational numbers to quadratic fields. In particular, under certain congruence conditions it is shown that the Fermat equation of exponent p has no solution over Q(√m) when p is a m-regular prime. Completely analogous to the work of Kummer, it is shown that m-regular primes can be described in terms of the generalized Bernoulli numbers. When p = 3,5 and 7, an explicit, easily computable criterion is given for m-regularity.en
dc.description.degreePh. D.en
dc.format.extentiv, 56, [1] leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/81015en
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 9204810en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1982.H362en
dc.subject.lcshFermat's theoremen
dc.titleThe Fermat equation over quadratic fieldsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1982.H362.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format