Pore-scale Interfacial and Transport Phenomena in Hydrocarbon Reservoirs

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Exploring unconventional hydrocarbon reservoirs and enhancing the recovery of hydrocarbon from conventional reservoirs are necessary for meeting the society's ever-increasing energy demand and requires a thorough understanding of the multiphase interfacial and transport phenomena in these reservoirs. This dissertation performs pore-scale studies of interfacial thermodynamics and multiphase hydrodynamics in shale reservoirs and conventional oil-brine-rock (OBR) systems.

In shale gas reservoirs, the imbibition of water through surface hydration into gas-filled mica pores was found to follow the diffusive scaling law, but with an effective diffusivity much larger than the self-diffusivity of water molecules. The invasion of gas into water-filled pores with width down to 2nm occurs at a critical invasion pressure similar to that predicted by the classical capillary theories if effects of disjoining pressure and diffusiveness of water-gas interfaces are considered. The invasion of oil droplets into water-filled pores can face a free energy barrier if the pressure difference along pore is small. The computed free energy profiles are quantitatively captured by continuum theories if capillary and disjoining pressure effects are considered. Small droplets can invade a pore through thermal activation even if an energy barrier exists for its invasion.

In conventional oil reservoirs, low-salinity waterflooding is an enhanced oil recovery method that relies on the modification of thin brine films in OBR systems by salinity change. A systematic study of the structure, disjoining pressure, and dynamic properties of these thin brine films was performed. As brine films are squeezed down to sub-nanometer scale, the structure of water-rock and water-oil interfaces changes marginally, but that of the electrical double layers in the films changes greatly. The disjoining pressure in the film and its response to salinity change follow the trend predicted by the DLVO theory, although the hydration and double layer forces are not simple additive as commonly assumed. A notable slip between the brine film and the oil phase can occur.

The role of thin liquid films in multiphase transport in hydrocarbon reservoirs revealed here helps lay foundation for manipulating and leveraging these films to enhance hydrocarbon production and to minimize environmental damage during such extraction.

hydrocarbon recovery, thin films, disjoining pressure