Noncoalescence in the Oblique Collision of Fluid Jets

Files

Main article (1.23 MB)
Downloads: 4143

TR Number

Date

2013-03-20

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society

Abstract

When two jets of fluid collide, they can "bounce'' off each other, due to a thin film of air which keeps them separated. We describe the phenomenon of stable noncoalescence between two jets of the same fluid, colliding obliquely with each other. Using a simple experimental setup, we carry out a parametric study of the bouncing jets by varying the jet diameter, velocity, angle of inclination, and fluid viscosity, which suggests that the contact time of bouncing jets scales as the square root of the normal Weber number We. A dimensionless parameter K = (We root Re/sin alpha)(1/2), where Re is the normal Reynolds number and alpha the angle of inclination of the jets, quantitatively captures the transition of colliding jets from bouncing to coalescence. This parameter draws parallels between jet coalescence and droplet splashing and indicates that the transition is governed by a surface instability. Stable and continuous noncoalescence between fluid jets makes it a good platform for experimental studies of the interaction between fluid interfaces and the properties of the interfacial air films.

Description

Keywords

Liquid-drops, Surfaces, Behavior, Droplets, Impact, Flow, Film, Physics

Citation

Wadhwa, Navish ; Vlachos, Pavlos ; Jung, Sunghwan, Mar 20, 2013. “Noncoalescence in the Oblique Collision of Fluid Jets,” PHYSICAL REVIEW LETTERS 110(12): 124502. DOI: 10.1103/PhysRevLett.110.124502