VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Towards a Reduced-Scaling Method for Calculating Coupled Cluster Response Properties

TR Number

Date

2018-07-02

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

One of the central problems limiting the application of accurate {em ab initio} methods to large molecular systems is their high computational costs, i.e., their computing and storage requirements exhibit polynomial scaling with the size of the system. For example, the coupled cluster singles and doubles method with the perturbative inclusion of triples: the CCSD(T) model, which is considered to be the ``gold standard'' of quantum chemistry scales as 𝑂(N⁷) in its canonical formulation, where N is a measure of the system size. However, the steep scaling associated with these methods is unphysical since the property of dynamic electron correlation or dispersion (for insulators) is local in nature and decays as R⁻⁶ power of distance. Different reduced-scaling techniques which attempt to exploit this inherent sparsity in the wavefunction have been used in conjunction with the coupled cluster theory to calculate ground-state properties of molecular systems with hundreds of heavy atoms in reasonable computational time. However, efforts towards extension of these methods for describing response properties like polarizabilities, optical rotations, etc., which are related to the derivative of the wavefunction with respect to external electric or/and magnetic fields, have been fairly limited and conventional reduced-scaling algorithms have been shown to yield large and often erratic deviations from the full canonical results. Accurate simulation of response properties like optical rotation is highly desirable as it can help the experimental chemists in understanding the structure-activity relationship of different chiral drug candidates.

In this work, we identify the reasons behind the unsatisfactory performance of the pair natural orbital (PNO) based reduced-scaling approach for calculating linear response properties at the coupled cluster level of theory and propose novel modifications, which we refer to as PNO++, (A. Kumar and T. D. Crawford. Perturbed Pair Natural Orbitals for Coupled-Cluster Linear-Response Theory. 2018, {em manuscript in preparation}) that can provide the necessary accuracy at significantly lower computational costs. The motivation behind the PNO++ approach came from our works on the (frozen) virtual natural orbitals (FVNO), which can be seen as a precursor to the concept of PNOs (A. Kumar and T. D. Crawford. Frozen Virtual Natural Orbitals for Coupled-Cluster Linear-Response Theory. {em J. Phys. Chem. A}, 2017, 121(3), pp 708 716) and the improved FVNO++ method (A. Kumar and T. D. Crawford. Perturbed Natural Orbitals for Coupled-Cluster Linear-Response Theory. 2018, {em manuscript in preparation}). The essence of these modified schemes (FVNO++ and PNO++) lie in finding suitable field perturbed one-electron densities to construct ``perturbation aware" virtual spaces which, by construction, are much more compact for describing response properties, making them ideal for applications on large molecular systems.

Description

Keywords

Coupled Cluster, Reduced-Scaling, Response Properties

Citation