Semantic Interaction for Symmetrical Analysis and Automated Foraging of Documents and Terms

TR Number

Date

2020-04-23

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Sensemaking tasks, such as reading many news articles to determine the truthfulness of a given claim, are difficult. These tasks require a series of iterative steps to first forage for relevant information and then synthesize this information into a final hypothesis. To assist with such tasks, visual analytics systems provide interactive visualizations of data to enable faster, more accurate, or more thorough analyses. For example, semantic interaction techniques leverage natural or intuitive interactions, like highlighting text, to automatically update the visualization parameters using machine learning. However, this process of using machine learning based on user interaction is not yet well defined. We begin our research efforts by developing a computational pipeline that models and captures how a system processes semantic interactions. We then expanded this model to denote specifically how each component of the pipeline supports steps of the Sensemaking Process. Additionally, we recognized a cognitive symmetry in how analysts consider data items (like news articles) and their attributes (such as terms that appear within the articles). To support this symmetry, we also modeled how to visualize and interact with data items and their attributes simultaneously. We built a testbed system and conducted a user study to determine which analytic tasks are best supported by such symmetry. Then, we augmented the testbed system to scale up to large data using semantic interaction foraging, a method for automated foraging based on user interaction. This experience enabled our development of design challenges and a corresponding future research agenda centered on semantic interaction foraging. We began investigating this research agenda by conducting a second user study on when to apply semantic interaction foraging to better match the analyst's Sensemaking Process.

Description

Keywords

Semantic interaction, semantic interaction foraging, symmetry, interactive visual analytics, exploratory data analysis

Citation