Raman and Surface-Enhanced Raman Spectroscopy Imaging of Droplets: Characterization and Environmental Implications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Droplets are ubiquitous microscopic systems - ranging in size from several nanometers to ~100 micrometers – that undergo abundant environmental interactions. Researchers have shown that droplets can impact both earth climate and air quality through physical and chemical processes. Droplets released from the human respiratory system, either suspended in air or deposited on surfaces, can carry pathogens (e.g., influenza viruses, the SARS-CoV-2 virus), and are thus important for disease transmission. The need to understand the role of droplets in environmental processes requires appropriate tools for droplet characterization. We used Raman and surface-enhanced Raman spectroscopy (SERS) based imaging as such tools due to their capacity for simultaneous collection of abundant molecular information inside droplets and their potential to collect detailed images of droplet component distributions. We imaged pH and chemical moiety distributions inside droplets over a wide range of: 1) droplet compositions; 2) surrounding environmental conditions (relative humidity, temperature); and 3) droplet morphologies. This dissertation describes measurement of droplet pH in droplets containing mixtures of phosphate buffer (PB), one of the most commonly used biological solvents, and ammonium sulfate (AS), arguably the most abundant chemical species in atmospheric droplets, at room temperature. We observed a pH gradient inside PB droplets while a homogeneous pH distribution was found inside AS droplets, thus showing a significant pH effect due to droplet composition. We attributed the contrasting pH distribution in the two droplet systems to different ionic interactions at the air-water interface. In addition, we obtained AS droplet images at 223K to investigate ice nucleation upon freezing. We observed variable nucleation behavior in AS droplets as a function of concentration, a finding with implications for atmospheric cloud nucleation. We also investigated virus deposition during sessile droplet evaporation using gold nanoparticles. SERS imaging enabled development of correlations between virus viability and droplet deposition pattern and related them in terms of the coffee-ring effect. Suppression of the coffee-ring effect can reduce virus infectivity on surfaces during droplet evaporation. These works collectively exhibit the potential of Raman and SERS imaging for droplet characterization.