Cranial manipulation affects cholinergic pathway gene expression in aged rats

dc.contributor.authorAnandakrishnan, Ramuen
dc.contributor.authorTobey, Hopeen
dc.contributor.authorNguyen, Stevenen
dc.contributor.authorSandoval, Osscaren
dc.contributor.authorKlein, Bradley G.en
dc.contributor.authorCosta, Blaise M.en
dc.date.accessioned2022-08-19T12:58:58Zen
dc.date.available2022-08-19T12:58:58Zen
dc.date.issued2022-01-10en
dc.description.abstractContext: Age-dependent dementia is a devastating disorder afflicting a growing older population. Although pharmacological agents improve symptoms of dementia, age-related comorbidities combined with adverse effects often outweigh their clinical benefits. Therefore, nonpharmacological therapies are being investigated as an alternative. In a previous pilot study, aged rats demonstrated improved spatial memory after osteopathic cranial manipulative medicine (OCMM) treatment. Objectives: In this continuation of the pilot study, we examine the effect of OCMM on gene expression to elicit possible explanations for the improvement in spatialmemory. Methods: OCMM was performed on six of 12 elderly rats every day for 7 days. Rats were then euthanized to obtain the brain tissue, from which RNA samples were extracted. RNA from three treated and three controls were of sufficient quality for sequencing. These samples were sequenced utilizing next-generation sequencing from Illumina NextSeq. The Cufflinks software suite was utilized to assemble transcriptomes and quantify the RNA expression level for each sample. Results: Transcriptome analysis revealed that OCMM significantly affected the expression of 36 genes in the neuronal pathway (false discovery rate [FDR] <0.004). The top five neuronal genes with the largest-fold change were part of the cholinergic neurotransmission mechanism, which is known to affect cognitive function. In addition, 39.9% of 426 significant differentially expressed (SDE) genes (FDR<0.004) have been previously implicated in neurological disorders. Overall, changes in SDE genes combined with their role in central nervous system signaling pathways suggest a connection to previously reported OCMM-induced behavioral and biochemical changes in aged rats. Conclusions: Results from this pilot study provide sufficient evidence to support a more extensive study with a larger sample size. Further investigation in this direction will provide a better understanding of the molecular mechanisms of OCMM and its potential in clinical applications. With clinical validation, OCMM could represent a much-needed low-risk adjunct treatment for age-related dementia including Alzheimer's disease.en
dc.description.notesThis work was funded by the Edward Via College of Osteopathic Medicine Research Eureka Accelerator Program (REAP, Fund No. 10261), and American Osteopathic Association (Grant No. 1915733).en
dc.description.sponsorshipEdward Via College of Osteopathic Medicine Research Eureka Accelerator Program (REAP) [10261]; American Osteopathic Association [1915733]en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1515/jom-2021-0183en
dc.identifier.eissn2702-3648en
dc.identifier.issue2en
dc.identifier.pmid34995434en
dc.identifier.urihttp://hdl.handle.net/10919/111564en
dc.identifier.volume122en
dc.language.isoenen
dc.publisherDe Gruyteren
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectAlzheimer's diseaseen
dc.subjectcholinergic pathwayen
dc.subjectdementiaen
dc.subjectneurotransmissionen
dc.subjectosteopathic cranial manipulationen
dc.titleCranial manipulation affects cholinergic pathway gene expression in aged ratsen
dc.title.serialJournal of Osteopathic Medicineen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1515_jom-2021-0183.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
Published version