Approximation of integro-partial differential equations of hyperbolic type
dc.contributor.author | Fabiano, Richard H. | en |
dc.contributor.committeechair | Burns, John A. | en |
dc.contributor.committeemember | Herdman, Terry L. | en |
dc.contributor.committeemember | Wheeler, Robert | en |
dc.contributor.committeemember | Cliff, Eugene M. | en |
dc.contributor.committeemember | Beattie, Christopher A. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2017-01-30T21:24:09Z | en |
dc.date.available | 2017-01-30T21:24:09Z | en |
dc.date.issued | 1986 | en |
dc.description.abstract | A state space model is developed for a class of integro-partial differential equations of hyperbolic type which arise in viscoelasticity. An approximation scheme is developed based on a spline approximation in the spatial variable and an averaging approximation in the de1ay variable. Techniques from linear semigroup theory are used to discuss the well-posedness of the state space model and the convergence properties of the approximation scheme. We give numerical results for a sample problem to illustrate some properties of the approximation scheme. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | iv, 89 leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/74733 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 14979811 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1986.F345 | en |
dc.subject.lcsh | Difference equations | en |
dc.title | Approximation of integro-partial differential equations of hyperbolic type | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1