Approximation of integro-partial differential equations of hyperbolic type

dc.contributor.authorFabiano, Richard H.en
dc.contributor.committeechairBurns, John A.en
dc.contributor.committeememberHerdman, Terry L.en
dc.contributor.committeememberWheeler, Roberten
dc.contributor.committeememberCliff, Eugene M.en
dc.contributor.committeememberBeattie, Christopher A.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-01-30T21:24:09Zen
dc.date.available2017-01-30T21:24:09Zen
dc.date.issued1986en
dc.description.abstractA state space model is developed for a class of integro-partial differential equations of hyperbolic type which arise in viscoelasticity. An approximation scheme is developed based on a spline approximation in the spatial variable and an averaging approximation in the de1ay variable. Techniques from linear semigroup theory are used to discuss the well-posedness of the state space model and the convergence properties of the approximation scheme. We give numerical results for a sample problem to illustrate some properties of the approximation scheme.en
dc.description.degreePh. D.en
dc.format.extentiv, 89 leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/74733en
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 14979811en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1986.F345en
dc.subject.lcshDifference equationsen
dc.titleApproximation of integro-partial differential equations of hyperbolic typeen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1986.F345.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format