VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Characterization of Transcriptional and Post-transcriptional Regulation of lin-42/Period During Post-embryonic Development of C. elegans

TR Number

Date

2012-09-11

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Period, which is broadly conserved in metazoans, regulates circadian timing of neurophysiology as well as cell fate specification. Studies in mouse and humans indicate that period functions as a tumor suppressor and controls adult stem cell differentiation. However, regulation of period function in developmental pathways has not been characterized and appears to be different from its regulation and function in circadian pathways. lin-42 is the Caenorhabditis elegans ortholog of period and has both circadian and developmental timing functions. During post-embryonic larval development, cyclic expression and function of lin-42 controls stage-specific and reiterative cell fate choices of a subset of epidermal stem cells called seam cells. We are studying lin-42 regulation of seam cell fate during C. elegans larval development as a model for understanding the mechanisms of period regulation of adult stem cell fate in mammals.

This dissertation describes the research undertaken to characterize the cis-regulatory elements and the trans-regulatory factors that control lin-42 expression. We used direct molecular interaction assays (Electrophoretic Mobility Shift Assay, EMSA) (Chapter 2) followed by an RNA interference (RNAi)-based genetic screen (Chapter 3) to identify lin-42 transcriptional regulators. Using the EMSA, we identified three 50 to 100 base pair regions (binding regions, BR1-3) in the lin-42 5รข noncoding sequences that were bound with specificity by C. elegans nuclear proteins. These binding regions represent putative cis-regulatory elements that may serve as transcription factor binding sites (TFBSs). We attempted to identify by mass spectrometry the proteins that bind to the BR sequences. We also used Phylogenetic Footprinting and bioinformatics screens to identify candidate C. elegans transcription factors (TFs) that may bind to putative TFBSs within the BR sequences. Using an RNAi-based screen, we tested the candidate TF genes for potential genetic interactions with lin-42. We identified ZTF-16, a member of the Hunchback/Ikaros zinc-finger transcription factor family, as a potential lin-42 activator and, using quantitative real-time PCR, confirmed that ztf-16 mutation results in down-regulation and loss of cycling expression of lin-42. We further determined that loss of ztf-16 results in seam cell development defects that phenocopy lin-42 loss-of-function, thus validating ZTF-16 as a transcriptional activator of lin-42.

Description

Keywords

RNAi, circadian period, EMSA, ztf-16, lin-42, C. elegans, post-embryonic, transcriptional

Citation