VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Comparison of Potential Contribution of Typical Pavement Materials to Heat Island Effect

TR Number

Date

2020-06-10

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Pavement materials have significant influence on the urban heat island effect (UHIE). This paper presents a study on the potential effects of pavement materials on UHIE in a natural environment. Three typical pavement materials, including cement concrete, dense asphalt concrete and porous asphalt mixture, were selected to evaluate their anti-UHIE properties by testing. In this paper, heat island potential (HIP) is proposed as a new index to analyze the influence of pavement materials on UHIE. It is shown that the temperature inside a pavement distinctly depends on the depth, and varies, but is usually higher than the air temperature. Solar radiation in the daytime significantly contributes to the temperature of pavement surface and the upper part. The correlation becomes weak at the middle and the bottom of pavements. Among the three materials tested in this study, the anti-UHIE performance of cement concrete is significantly higher than that of the other asphalt mixtures, while the porous asphalt mixture is slightly better than the dense asphalt concrete in anti-UHIE.

Description

Keywords

urban heat island, asphalt concrete mixture, cement concrete mixture, porous asphalt concrete mixture

Citation

Yang, H.; Yang, K.; Miao, Y.; Wang, L.; Ye, C. Comparison of Potential Contribution of Typical Pavement Materials to Heat Island Effect. Sustainability 2020, 12, 4752.